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Article

Phaeoacremonium aleophilum that usually manifests during 
July and August (6). In France, 13% of vineyards are affected 
yearly by Esca, netting a cumulative loss of over 1 billion euros 
(7). Leaf blight is a bacterial disease caused by Xylophilus 
ampelinus (8). Infected vineyards have reported losses of 
over 70% of typical yields (9). These diseases are problematic 
due to increased fungicide usage and decreased crop yields, 
significantly decreasing grapevine orchard profitability.
 These common vineyard diseases are traditionally 
managed through a combination of cultural practices and 
fungicides, with black rot being controlled by improving 
vineyard aeration and sanitation (10), Esca requiring 
preventive measures due to the absence of effective chemical 
treatments (11), and leaf blight managed through fungicidal 
sprays and moisture control (12). Accurate and early detection 
of vineyard diseases is critical to reduce fungicide usage and 
minimize crop loss. Traditionally, the detection and diagnosis 
of these diseases have relied heavily on the expertise of 
trained professionals who visually inspect the plants (13). 
However, this method is constrained by the availability of 
experts and subjective interpretation. This challenge can be 
innovatively addressed through the application of machine 
learning, specifically deep learning and Convolutional Neural 
Networks (CNNs).
 Machine learning, a subset of artificial intelligence, 
enables systems to autonomously learn and improve from 
experience. Deep learning, a specialized subset of machine 
learning, employs a neural network, which is a system of 
interconnected nodes that mimic the neural connections in 
the human brain, to analyze and learn from data in complex 
ways (14). This architecture enables the network to recognize 
patterns and make decisions based on input data, enhancing 
its ability to understand and process information at a deep 
level. CNNs, a type of deep neural network, are exceptionally 
effective in analyzing visual imagery (15).
 In the context of viticulture, researchers have explored the 
use of a machine learning technique named Support Vector 
Machines (SVMs) for detecting grapevine diseases (16). 
SVMs are particularly adept at binary classification problems 
where elements of a dataset are categorized into two distinct 
groups (17). Consequently, this research was limited to 
differentiating between healthy and diseased leaves without 
identifying specific diseases. Moreover, the study used only 
250 diseased and 400 total leaf images while delivering 
slightly more than 95% accuracy, rendering it unsuitable to 
meet the diverse and practical needs of farmers in managing 
a range of vineyard diseases. 
 In contrast to SVMs, CNNs can be trained on extensive 
datasets of leaf images, enabling them to identify different 
disease symptoms with higher accuracy. This approach 
is part of the broader field of precision agriculture, where 
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SUMMARY
According to the International Organization of Vine 
and Wine, an impressive 77.8 million tons of grapes 
are cultivated globally each year. Grapes, long a 
cornerstone of both diets and agriculture worldwide, 
are increasingly threatened by diseases such as 
black rot, Esca, and leaf blight. In modern grapevine 
orchards, the prevalent method of disease detection 
relies on human observation, a process that often 
leads to delays in identifying these afflictions. This 
inefficiency typically results in diminished crop yields 
and inferior fruit quality. Automating grapevine leaf 
disease detection using machine learning will lead 
to sustainable farming. Deep learning, a branch of 
machine learning, is well-suited for learning from 
image data. In this paper, we deployed Convolutional 
Neural Networks (CNN), a type of deep learning model, 
to accurately classify healthy and disease-affected 
grapevine leaf images. We developed a baseline 
CNN model along with several transfer learning 
CNN models, namely DenseNet121, EfficientNetB7, 
MobileNetV2, ResNet50, and VGG16. We hypothesized 
that ResNet50 would be the best-performing model as 
it allows deep networks to train with high accuracy, 
but EfficientNetB7 turned out to be the most accurate 
model after experimentation. We created a max-voting 
ensemble with the three most accurate CNN models 
from the set, and it delivered better results than any 
individual CNN model. Our max-voting ensemble was 
then deployed on the web. Consequently, grapevine 
farmers and other users can detect the three common 
grapevine leaf diseases – black rot, Esca, and leaf 
blight, as well as healthy leaves by uploading their 
own images from the orchard.

INTRODUCTION
 According to the International Organization of Vine and 
Wine, 77.8 million tons of grapes are grown annually (1). 
Grapes have been a staple of people’s diets since ancient 
times and are usually used for direct consumption or for 
making wine or raisins. Unfortunately, grapevine diseases 
such as black rot, Esca, and leaf blight have reigned in 
orchards, vastly reducing crop yields and forcing farmers 
to overuse expensive fungicides (2, 3). Black rot is a fungal 
disease triggered by Guignardia bidwellii in hot and humid 
weather (4). It renders grapes inedible and has been called 
the “Achilles Heel” of grape production in the Middle East 
(5). Esca is a trunk disease sometimes caused by the fungus 
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technology is utilized to enhance crop health and productivity 
(18). Moreover, transfer learning, where a pre-trained neural 
network is adapted for a new task, has been successfully 
employed in agriculture. Popular transfer learning models 
like DenseNet, EfficientNet, MobileNet, ResNet and VGG, 
originally developed for general image recognition tasks, 
are being repurposed for agricultural applications (19–23). In 
addition to these models, the concept of max-voting ensemble 
is gaining traction. Max-voting involves combining multiple 
models and using the majority vote of their predictions to 
make the final decision (24). Max-voting ensemble improves 
the overall accuracy by leveraging the strengths of diverse 
models, making it particularly effective in complex tasks like 
disease detection in agriculture (24).
 DenseNet is a CNN with each layer connected to all other 
layers in a feed-forward fashion (19). This architecture not only 
mitigates the vanishing gradient problem – where gradients 
become too small to effectively train the network during 
backpropagation – but also enhances feature propagation 
and reduces the overall number of parameters required (19). 
Among the DenseNet architectures, we chose DenseNet121 
due to its balance of depth and complexity. 
 EfficientNet is a CNN that uniformly scales all dimensions 
(depth, width, resolution) using a compound coefficient (20). 
Its main benefits include being able to train efficiently, easily 
adapt to a wide variety of datasets, and massively reduce the 
number of parameters in a model (20). Of the eight available 
model architectures, we selected EfficientNetB7 due to its 
enhanced capability to scale depth, width, and resolution 
uniformly. 
 MobileNet is a CNN based on an inverted residual structure; 
the residual block’s input and output are thin bottleneck layers 
(21). Its main benefits include having a small model size (only 
about 9MB), requiring less computation due to Depthwise 
Separable Convolutions, and being compatible with mobile 
devices since it does not require Graphics Processing Units 
(GPUs) (21). Of the three available model architectures, we 
chose MobileNetV2 for this paper because it struck a balance 
between efficiency and accuracy. 
 ResNet is a CNN with a Residual Block (22). Its main 
benefits include allowing deep networks to train with high 
accuracy, minimizing the effect of layers that negatively 
impact model performance, and resolving the vanishing 
gradient problem (22). Among the ResNet variants, we 
selected ResNet50 for its relatively lower complexity, which 
translated to lower computational demand. 
 VGG is a CNN with few layers but many parameters (23). 
Its main benefit is being relatively simple to understand and 
explain (23). The two model architectures are VGG16 and 

VGG19. We chose VGG16, which is simpler than VGG19 with 
its 16 layers, for its ease of understanding and implementation. 
 In this paper, we used a grapevine leaf image dataset 
from kaggle.com. It contained four classes (black rot, Esca, 
leaf blight, and healthy) with about 2,000 training images 
and about 500 testing images in each class (Table 1). We 
augmented the dataset using techniques like zooming, 
rotating, illuminating, dimming, and shearing (25). We used 
the augmented dataset with 12,000 total images to make our 
models more accurate – even for low-quality images and 
those with unusual backgrounds – than previously published 
models. We used augmented images to help the model 
generalize, but they were not included in the testing data so 
the model could be evaluated on real images provided in the 
original dataset. 
 We developed a baseline CNN model along with the transfer 
learning CNN models noted above, namely DenseNet121, 
EfficientNetB7, MobileNetV2, ResNet50 and VGG16. We 
selected a particular architecture for a given transfer learning 
model with the goal of optimizing accuracy in grapevine leaf 
disease detection. We hypothesized that ResNet50 would 
be the best-performing model as it allowed deep networks 
to train with high accuracy, but EfficientNetB7 turned out to 
be the most accurate model after experimentation. We then 
created a max-voting ensemble with the three most accurate 
CNN models – EfficientNetB7, ResNet50 and baseline CNN – 
from the set, and it delivered better results than any individual 
CNN model. We then deployed this max-voting ensemble on 
the website.

RESULTS
 The grapevine dataset had images of leaves infected with 
black rot, Esca and leaf blight as well as images of healthy 
leaves (Figure 1). We applied data augmentation techniques 
to increase the dataset size, simulate real-world variability, 
improve model generalization and reduce overfitting.
 Comparing the accuracies of different CNN model 
architectures was the first test we performed. In the 
experiments, the three most accurate models each had over 
99% accuracy. The EfficientNetB7, ResNet50, and baseline 
CNN models had accuracies of 99.6%, 99.2%, and 99.1% 
respectively (Figure 2A). They were better than the other 
three models, so we used the EfficientNetB7, ResNet50, and 
baseline CNN models for the max-voting ensemble. VGG16, 
DenseNet121, and MobileNetV2 had accuracies of 98.3%, 
96.7%, and 94.3% respectively (Figure 2A).
 We compared the predictions of the CNN models with 
the target values to generate the confusion matrices. From 

Table 1: Number of images for different diseases in the dataset. The original dataset had a different number of images for each class 
in the training dataset. In this research, the same number of training images were used for each class from the original data set for training 
consistency. The same number of augmented images were created for each class for the same reason.
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the confusion matrices of the six models (Figure 2B), it is 
visually clear that black rot and Esca pictures were easily 
confused with each other. In particular, DenseNet121, 
EfficientNetB7, ResNet50, and VGG16 made almost all of 
their misclassifications with black rot and Esca.
 We looked at the EfficientNetB7 model’s error visualization 
to understand what was creating the inaccurate classifications 
in these models. These images were difficult to classify into 
two classes properly as they looked almost identical and had 
the same spot size and shape. Consequently, the transfer 
learning models could not classify them accurately.
 Next, we gathered insight from training and validation 
accuracy curves (Figure 3A). These curves were created 
by calculating the accuracies after each training epoch. 
Finally, by plotting the model weights’ file sizes against their 
corresponding validation accuracies, we found that there was 
a strong correlation between the model weight’s file size and 
accuracy (Figure 3B).  
 We used the three highest-performing models – 
EfficientNetB7, ResNet50 and baseline CNN – in a max-
voting ensemble. This ensemble looked at the predictions 
of each of the CNNs and chose the most popular one. Its 
classification metrics (Figure 4A), confusion matrix (Figure 
4B), and error visualization (Figure 4C) showed that the max-
voting ensemble performed better on the testing data than 
all other models; it had an accuracy of 99.8%. The ensemble 
only had four errors on the testing data. It misclassified only 
four images – two black rot images were classified as Esca 
and two Esca images were classified as black rot. 
 To accurately assess the efficiency of the ensemble, we 
recorded the classification times. Notably, the max-voting 
ensemble operated within the same system, with the only 
variable being the presence of a GPU. This addition enhanced 
performance: with a GPU, the max-voting ensemble averaged 
12.17 milliseconds to classify a single image, whereas, 
without the GPU, the time increased to 383 milliseconds. 
This contrast underlined the GPU’s role in accelerating 
computational tasks within an identical CPU environment.

DISCUSSION
 In this study, we learned that EfficientNetB7 and ResNet50 
worked well individually for detecting diseases in grapevine 

plants. We hypothesized that ResNet50 would be the most 
accurate as it allowed deep networks to train with high 
accuracy. While ResNet50 performed very well with 99.2% 
accuracy, EfficientNetB7 was even more accurate with 99.6% 
accuracy. EfficientNetB7, with its ability to train efficiently, 
easily adapted to a wide variety of datasets, and massively 
reduced the number of parameters in a model, outperforming 
all other models. Moreover, ensemble methods such as max-
voting enabled us to achieve 99.8% accuracy on testing data 
with better results than any single transfer learning CNN 
model. 
 From the training and validation accuracy curves (Figure 
3A), we noticed that the training accuracy is higher than the 
validation accuracy. This made sense intuitively. However, we 
noticed that the baseline CNN’s validation accuracy during 
training was inconsistent. This hinted that the model might 
have overfitted the training data. The rest of the line graphs 
(Figure 3A) had no issues.
 The validation accuracy curve of the baseline CNN 
model highlighted that simpler model architectures could 
achieve high accuracy but might exhibit variability across 
epochs due to overfitting to the training dataset. In contrast, 
the five transfer learning CNN models, which were derived 
from the TensorFlow library (an open-source software library 
developed by the Google Brain team for machine learning and 
deep neural network research) and not from the baseline CNN 
model, demonstrated more consistent validation accuracies. 
These models were carefully modified to accommodate 
the grapevine disease detection dataset, ensuring their 
performance metrics are distinct and independent from 
those of the baseline CNN model. The robust architectures of 
these transfer learning models, which had been pre-trained 
on large and diverse datasets, contributed to their stability 
and reliability in validation accuracy, underscoring their 
effectiveness for this application. 
 In this study, data augmentation improved the performance 
of lower-accuracy models, such as MobileNetV2, 
DenseNet121, and VGG16, suggesting these models initially 
suffered from overfitting and benefited from the more varied 
training examples. Conversely, the higher-performing 
models – EfficientNetB7, ResNet50, and the baseline CNN 
– showed only a slight increase in accuracy with augmented 
data, reflecting their inherent robustness and effective 
generalization from the training set. These observations 
highlighted the role of data augmentation in boosting model 
performance, especially by mitigating overfitting in models 
that were less optimized. 
 The correlation between model size and accuracy (Figure 
3B) presented a nuanced insight into the effectiveness of 
different models. The observed trend indicated that larger 
models generally achieve higher accuracy. We could attribute 
this correlation to several factors that impact a model’s size, 
including the depth and number of layers, the complexity of 
the network architecture, and the volume of parameters and 
weights that the model must learn during training. Larger 
models like EfficientNetB7 and ResNet50, which had more 
extensive and intricate architectures, were capable of learning 
more complex features and patterns in the data, contributing 
to their higher accuracy rates.
 However, the relationship between model size and 
accuracy was not linear. As indicated in our results, beyond 
a threshold of around 150 megabytes, the improvements 

Figure 1: Examples of images showing grapevine leaves that 
are infected with black rot, Esca, leaf blight, or are healthy. 
There are 2 images for each class of grapevine leave diseases that 
are photographed on a plain neutral colored background, one at a 
time.
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in accuracy became marginal (Figure 3B), which was 
particularly revealing. This plateau effect suggested that while 
more complex models with a greater number of parameters 
could capture nuanced patterns in data more effectively, 
there was a point beyond which additional complexity did 
not yield significant benefits. This could be due to overfitting, 
where the model became so well-tuned to the training data 
that it failed to generalize effectively to new, unseen data. It 

also reflected the principle of diminishing returns in machine 
learning, where the cost (in terms of computational resources 
and time) of increasing model complexity did not always 
translate into proportional improvements in performance.
 Our findings highlighted that the relationship between 
model size and accuracy significantly affected the feasibility of 
deploying machine learning models in real-world agricultural 
contexts. Our research goals were to develop models 

Figure 2: Prediction accuracies and confusion matrices of the models tested. (A) Prediction accuracy on the grapevine leaves testing 
data. The bar graph shows the accuracies of six different models: Baseline CNN, DenseNet121, EfficientNetB7, MobileNetV2, ResNet50, and 
VGG16. The accuracies ranged from 94.3% to 99.6%. The models are sorted in decreasing order based on their respective accuracy. (B) Six 
confusion matrices depicting errors of the models tested. For each confusion matrix, the x-axis has the predicted disease while the y-axis has 
the actual disease. The number of testing images that fall into a given category is written inside each square. The squares that are colored 
orange represent a large number of data points and black represent a small number of data points.
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that not only exhibited high accuracy but also maintained 
computational efficiency for ease of use in the field. This 
balance ensured that the models were sophisticated 
enough to detect subtle indicators of disease effectively yet 
streamlined enough to be deployed on platforms with limited 
computational power, which was often the case in agricultural 
environments. The findings from this study would inform the 
selection of future models, guiding a targeted approach that 
prioritized both precision and practicality for end-users such 
as vineyard operators.
 In this study, it took the max-voting ensemble 12.17 
milliseconds to predict a single image with a GPU. However, 
most farmers lack access to GPUs. Without one, it took the 
max-voting ensemble 383 milliseconds to predict a single 
image. In future, this time could be reduced to apply this 
technology effectively in rural areas with poor farmers. To 
enhance model inference time in future work, we plan to 
implement two key strategies. The first is model pruning, a 
process where redundant network parameters are identified 
and removed. This approach aims to streamline the model 
without sacrificing its original accuracy, by focusing on the 
most crucial aspects of the network. The second strategy 
involves the use of depthwise separable convolutions. This 
technique separates the spatial and depth convolutions, 
significantly reducing the computational load and thus 
speeding up the inference process. However, there is some 
uncertainty regarding how this change might affect the 
model’s ability to accurately capture complex features, and 
consequently, its overall accuracy.
 Additionally, it is important to note that previous studies 
typically had not reported on classification times. This omission 
was largely because such timings were heavily influenced 

Figure 3: Training and validation accuracies of different models 
as well as the relationship between model size and accuracy. 
(A) Six line graphs depicting the training and validation accuracies of 
all models tested. The x-axis represents the epoch number, and the 
y-axis represents the accuracy. The blue line represents the training 
accuracy, and the orange line represents the validation accuracy. (B) 
A line graph depicting the positive correlation between the size of 
the model’s weights in megabytes and the accuracy (in %) on testing 
data. 

Figure 4: Classification metrics, confusion matrix and error visualization for max-voting ensemble deep learning model. (A) 
Classification metrics for the max-voting ensemble including precision, recall, f1-score, accuracy, macro average, and weighted average. 
(B) A confusion matrix depicting the errors made by the max-voting ensemble. The x-axis has the predicted disease while the y-axis has the 
actual disease. The number of testing images that fall into a given category is written inside each square. These squares are colored orange 
representing a large number of data points and black representing a small number of data points. (C) All of the grapevine leaf images that 
were misclassified by the max-voting ensemble are depicted. The predicted label and true label are shown above the image. The numbers 0, 
1, 2, and 3 refer to black rot, Esca, leaf blight, and healthy respectively. Out of the 4 misclassified images, 2 black rot-affected images were 
predicted as Esca, and another 2 Esca-affected images were classified as black rot.
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by the specific underlying hardware platform, including the 
CPUs and GPUs available to a researcher. Consequently, 
direct comparisons of classification speed across different 
studies were challenging without a standardized hardware 
benchmark. 
 The model required 224 by 224-pixel images or larger 
ones for accurate predictions. Having another model that 
handles extremely low-resolution images might be helpful in 
rural areas with old-fashioned cameras. Finally, the users can 
only input one image at a time on the website. In the future, it 
is imperative that the website takes thousands of images as 
input simultaneously for it to be operating at the industrial level. 
Added functionality would solve this problem. Additionally, a 
mobile app would be immensely helpful because it could run 
locally on a farmer’s smartphone. 
 In summary, this research successfully demonstrated 
the superior performance of EfficientNetB7 and ResNet50 in 
detecting grapevine diseases, with data augmentation proving 
particularly beneficial for models susceptible to overfitting. 
While ensembling methods like max-voting significantly 
enhanced accuracy, the study also revealed a diminishing 
returns effect in the relationship between model size and 
accuracy, guiding practical model deployment in agriculture. 
Future work aims to reduce inference time through model 
pruning and depthwise separable convolutions, crucial for 
application in resource-constrained settings. Enhancing the 
website for bulk processing and considering a mobile app 
for local processing present further opportunities to increase 
the utility and accessibility of this technology in agricultural 
practices.

MATERIALS AND METHODS
 Our study involved seven major steps that included data 
collection, exploratory data analysis, data preprocessing and 
augmentation, baseline CNN model development, transfer 
learning, model evaluation and website deployment.

Data Collection
 To find a suitable dataset, we navigated to kaggle.com/
datasets to look for a dataset with at least three different 
classes, a healthy class, and at least 500 images per class. 
We found a satisfactory dataset, titled “Grape_disease,” that 
was published by the kaggle.com user “Pushpa Lama” on 
July 1, 2021, at 14:33:41 (Eastern Daylight Time). It contained 
four classes (black rot, Esca, leaf blight, and healthy) with 
about 2,000 training images and about 500 testing images in 
each class (Table 1). These original images were stored as 

Joint Photographic Experts Group (JPG) files with a size of 
256 pixels by 256 pixels. Consequently, the aspect ratio was 
1:1. In total, the original dataset had 7,222 training images 
and 1,805 testing images (Table 1). Afterward, we created 
a kaggle.com notebook and added the dataset to the input 
directory.

Exploratory Data Analysis
 To get a better feel for the data, we read all the image files 
and stored them in a dataframe. Next, we plotted a bar graph 
and pie chart showing the image distribution across classes. 
We found that black rot, Esca, leaf blight, and healthy images 
were 26.0%, 26.4%, 24.2%, and 23.3%, respectively, of the 
total images in the original dataset. In addition, eight images 
for each class were plotted on a grid. It appeared that leaves 
were taken off grapevines and photographed with a plain 
background. 

Data Preprocessing and Augmentation
 Next, we performed data preprocessing. Resizing the 
images to 224 pixels by 224 pixels allowed us to utilize a 
variety of transfer learning models in the subsequent steps. 
Additionally, we normalized the images by dividing all pixel 
values by 255, a common practice in image processing. This 
step scaled the pixel values to a range of 0 to 1, facilitating 
the model’s learning process by ensuring numerical stability 
and speeding up convergence during training. Normalizing 
the data in this way helped to achieve faster, more efficient 
training by reducing the computational burden on the model. 
We decided to perform data augmentation to ensure that the 
final model could handle low-resolution images as well as 
images with natural backgrounds. We did the augmentations 
(Figures 5A – D), randomly on the entire dataset by 
techniques like zooming in or out of the image, flipping the 
image horizontally or vertically, rotating the image, increasing 
or decreasing the brightness of the image, and shearing the 
image.

Figure 5: Original and augmented images of different disease-
affected and healthy leaves. (A) Black rot-infected grapevine 
leaves. (B) Esca-infected grapevine leaves. (C) Leaf blight-infected 
grapevine leaves. (D) Healthy grapevine leaves.

Figure 6: The baseline CNN model architecture. The input 
layer is denoted with the letter A and has dimensions 224x224x3. 
The convolutional layers with letters B, C, D, E, F, and G have 
dimensions 112x112x32, 56x56x32, 28x28x32, 14x14x32, 7x7x32, 
and 3x3x32 respectively. The kernel size is shown underneath the 
visual representation of the corresponding convolutional layer. All 
convolutional layers are shown along with the kernel size. The max-
pooling from each convolutional layer to the next causes the width 
and height to halve. Finally, there are three hidden layers with 288, 
512, and 512 nodes respectively and an output layer with 4 nodes. 
These layers are represented with a column of small orange boxes.
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 Finally, we combined 1,656 images from the original 
dataset with 1,344 augmented images for each class. Please 
note that we used 1,656 training images for each class as the 
original dataset had a different number of training images in 
each class, and we wanted to ensure the models were trained 
equally for each class. This led to each class having 3,000 
images, with 12,000 images in total (Table 1). We published 
this newly created dataset on kaggle.com for others to use. 
Augmented images were used to help the model generalize, 
but they were not included in the testing data so the model 
could be evaluated on the real images present in the dataset.

Baseline CNN Model
 First, we created the model architecture (Figure 6) and built 
it as a “sequential model” in TensorFlow. Next, we added two 
fully connected dense layers with the relu activation function 
and an output layer with four output neurons at the top of the 
model (Figure 6 and Appendix). At this stage, we checked for 
overfitting and underfitting using training and validation loss. 
Additionally, we evaluated the model’s performance using 
validation accuracy, a confusion matrix, and a classification 
report. The images that the model predicted inaccurately 
were visualized to understand the model’s pitfalls better. 
We used Python Version 3.0.12 for programming, Jupyter 
Notebook Version 7.0.6 for development, and various Python 
libraries including TensorFlow, seaborn, scikit-learn, pandas, 
numpy and matplotlib for CNN modeling (Appendix).

Transfer Learning
 The five CNN models tested using transfer learning were 
DenseNet121, EfficientNetB7, MobileNetV2, ResNet50, 
and VGG16. For each transfer learning model, we imported 
its pre-trained weights from ImageNet. Next, we created a 
sequential model containing the transfer learning model. We 
then added a GlobalAvgPool2D layer to the sequential model. 
By calculating the mean of the input’s width and height, this 
layer performed downsampling. It reduced the total number 
of parameters and the chance of overfitting. Finally, we 
added a dense layer with a softmax activation. By doing this, 
raw neural network outputs were converted into probability 
vectors. Next, we set an EarlyStopping callback that stopped 
training if validation accuracy did not improve after eight 
epochs. In addition, we implemented a ModelCheckpoint 
callback that saved the model with the lowest validation loss. 
We compiled the sequential model with the Adam optimizer. 
Finally, we trained each model for 25 epochs, aligning with 
established conventions in machine learning. This duration 
struck a balance between undertraining and overfitting: too 
few epochs might prevent the model from fully learning from 
the dataset, while too many could cause the model to learn 
the training data too well, failing to generalize to new data.

Model Evaluation
 We determined the most suitable CNN models for the 
max-voting ensemble using validation accuracies, confusion 
matrices, and error visualizations. In a max-voting ensemble, 
each base model made a prediction on an image. Each 
prediction counted as a vote, and the disease with the most 
votes was the final prediction. If there was a tie, the final 
prediction was decided by the highest-scoring base model. 
We evaluated the ensemble using accuracy score, confusion 
matrix, classification metrics, and error visualization. We also 

found out how long the ensemble took to classify a single 
image with and without a GPU. After that, we downloaded the 
HDF5 file containing the most accurate models’ weights.

Website Deployment
 To develop a website, our code loaded the final model 
and classified an input image as having a certain disease. It 
was saved as a Python file and run using Streamlit. We used 
the link printed in the cell output to access the website. We 
uploaded various grapevine leaf images to the website to test 
the functionality (Figure 7).
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APPENDIX
The baseline CNN model architecture in Python code is as follows:
<code>
# Building the baseline CNN model
baseline_CNN_model = Sequential([Input(shape=(224,224,3)),
                                 Conv2D(32, 6, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 MaxPooling2D(),
                                 Conv2D(32, 5, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 MaxPooling2D(),
                                 Conv2D(32, 4, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 MaxPooling2D(),
                                 Conv2D(32, 3, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 MaxPooling2D(),
                                 Conv2D(32, 3, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 MaxPooling2D(),
                                 Conv2D(32, 3, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 Conv2D(32, 3, padding=’same’, activation=’relu’),
                                 BatchNormalization(),
                                 MaxPooling2D(),
                                 Dropout(0.2),
                                 Flatten(),
                                 Dense(512, activation=’relu’),
                                 Dense(512, activation=’relu’),
                                 Dense(4)])
</code>
The Input, Conv2D, BatchNormalization, MaxPooling2D, Dropout, Flatten, and Dense layers are predefined within the 
TensorFlow library. For the Input layer, we specify the shape of the input pictures. For the Conv2D layers, we specify the 
number of filters, kernel size, padding, and activation. For the Dropout layer, we specify the relative number of connections that 
we want to reset. For the Dense layers, we specify the number of neurons along with the activation function. Finally, we used 
the default parameter values for BatchNormalization, MaxPooling2D, and Flatten layers.

The entire code for this research project, including how to deploy the model to a website, can be found at github.com/rajarshi-
mandal/grapevine-disease-detection. The original dataset can be found at kaggle.com/datasets/rm1000/grape-disease-
dataset-original. The augmented dataset can be found at kaggle.com/datasets/rm1000/augmented-grape-disease-detection-
dataset.


