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most substantial risk of biodiversity loss, based on human 
population density (2). Human activity within the Western 
Ghats spans over 12,000 years, with the last two centuries 
witnessing extensive logging and clearing for plantation crops 
(3). 
 Amphibians, including frogs, exhibit a heightened 
sensitivity to environmental shifts owing to their unique 
life cycle, characterized by an aquatic larval phase that 
transitions into a terrestrial adult stage (4).  Surveying frogs 
in the Western Ghats poses inherent challenges due to their 
vocalization activity patterns occurring from early to late 
evening. The frogs advertise their presence in the dense 
canopy by vocalizing for several hours into the night. These 
calls help them to establish territories and to attract mates 
(5). Surveying frogs in a habitat consisting of  dense foliage, 
steep slopes, high leech activity, venomous snakes, and large 
mammals require highly  trained personnel and  is difficult  to 
scale.
 Notably, frog advertisement calls play a crucial role as a 
pre-mating isolation mechanism, showcasing a high degree 
of  species  specificity  (6).  Automated  identification  of  frog 
species based on their vocalizations can significantly increase 
the survey coverage of the habitat. Researchers have 
explored a variety of techniques to perform automatic animal 
species identification, including breaking the vocalization into 
a set of organized sequences of brief sounds from a species-
specific vocabulary and categorizing calls  into recognizable 
syllables (7).  Others have looked at improving automatic 
recognition using temporal context inherent in vocalizations 
by means of a convolutional neural network (CNN) (8). It has 
also been shown that the inclusion of temporal information 
like the number of repetitions of certain call characteristics 
improves the automatic recognition and transcription of 
wildlife recordings (8). 
 Training a machine learning (ML) model for automatic 
recognition of frog vocalizations requires large training 
datasets, needing highly intensive efforts over extended 
durations of time in the monsoon season when most 
vocalizations take place. Training datasets of twenty 
thousand samples per class have been used to recognize 
bird and whale sounds (8). However, in the case of rare 
species, due to their scarce prevalence, obtaining multiple 
recordings from different individuals from multiple locations 
is difficult, but possible. For frog vocalizations in the Western 
Ghats region of India, publicly available data sources at most 
contain a few species with single individual recordings (9). 
For smaller datasets, data augmentation can generate new 
samples by perturbing the data and then adding the new 
samples to the original data to expand the dataset. This 
is considered a regularization method by increasing the 

Optimizing data augmentation to improve machine 
learning accuracy on endemic frog calls

SUMMARY
The mountain chain of the Western Ghats on the 
Indian peninsula, a UNESCO World Heritage site, 
is home to about 200 frog species, 89 of which are 
endemic. Distinctive to each frog species, their 
vocalizations can be used for species recognition. 
Manually surveying frogs at night during the rain in 
elephant and big cat forests is difficult, so being able 
to autonomously record ambient soundscapes and 
identify species is essential. An effective machine 
learning (ML) species classifier requires substantial 
training data from this area. The goal of this study was 
to assess data augmentation techniques on a dataset 
of frog vocalizations from this region, which has a 
minimal number of audio recordings per species. 
Consequently, enhancing an ML model’s performance 
with limited data is necessary.  We analyzed the 
effects of four data augmentation techniques (Time 
Shifting, Noise Injection, Spectral Augmentation, 
and Test-Time Augmentation) individually and their 
combined effect on the frog vocalization data and the 
public environmental sounds dataset (ESC-50). The 
effect of combined data augmentation techniques 
improved the model's relative accuracy as the size 
of the dataset decreased. The combination of all four 
techniques improved the ML model’s classification 
accuracy on the frog calls dataset by 94%. This 
study established a data augmentation approach to 
maximize the classification accuracy with sparse data 
of frog call recordings, thereby creating a possibility 
to build a real-world automated field frog species 
identifier system. Such a system can significantly 
help in the conservation of frog species in this vital 
biodiversity hotspot.

INTRODUCTION
  According  to  the United Nations  Educational,  Scientific, 
and Cultural Organization (UNESCO), predating the 
Himalayan mountains, the Western Ghats Mountain 
chain  extends  for  approximately  1600  km  (990  miles), 
encompassing high montane forest ecosystems that play a 
pivotal role in shaping the Indian monsoon weather patterns. 
This region has exceedingly rich biodiversity and endemism. 
It is designated among the top eight ‘hottest hotspots’ of 
biodiversity, harboring a minimum of 325 globally endangered 
species (1). Concerningly, when examining the growth of 
human population trends within biodiversity hotspots, the 
Western Ghats is one of the top three hotspots with the 
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diversity of training data (10). Given the difficulty in collecting 
training data with various endemic frog species from this 
environment,  maximizing  the  classification  accuracy  with 
limited training data sets using data augmentation becomes 
a prerogative. Therefore, we examined the impact of suitable 
data augmentation methods on frog vocalization data to 
determine model accuracy. 
 We hypothesized that data augmentation would improve 
the ML model’s accuracy on the frog vocalization dataset. To 
test our hypothesis, frog vocalizations at the site of Endemic 
Greens in the Mudigere region of Western Ghats were 
collected. We evaluated the effects of augmentation methods 
on the combined training and test methods by analyzing the 
Convolutional Neural Network’s performance metrics.  We 
found  that  the  efficacy  of  augmentation  techniques  varies 
based on the data collection process and that different 
techniques are affected to different extents for the same 
change  in  the  data  collection  process.  This  finding  allows 
the determination of the data collection parameters including 
the number of recordings per frog species, noise effects, 
recording length needed to effectively perform an automatic 
species  identification  in  the  field,  and  the  corresponding 
augmentation techniques that work best with the collected 
data. With  these parameters  the significant human effort  to 
collect the field recordings under challenging conditions can 
be optimized to allow more endangered frog species to be 

surveyed, which in turn will allow for a better biomarker of 
the biodiversity health in the ecologically sensitive Western 
Ghats region. 

RESULTS
 To identify the frog species based on the recorded calls 
from the Western Ghats, an expert naturalist and zoologist 
trained on the calls from endemic and local frog species 
identified the species based on the recorded frog calls from 
this location (Figure 1).
 We applied three data augmentation methods on the 
training data: Spectral, Time Shift and Noise Injection (11). We 
also ran the neural network on data without any augmentation 
as a control (Figure 2A). Spectral Augmentation works in 
the frequency and time domain and randomly obstructs 
the spectrogram by masking frequency values (Figure 
2B). Time Shifting creates augmented samples in the time 
domain and randomly changes the tempo and length of the 
audio sample without changing the frequency component 
(Figure 2C).  Noise injection adds Gaussian noise at random 
noise levels to the original sample to create the augmented 
samples (Figure 2D). The effects of each training data set 
augmentation method were evaluated both independently 
and when all methods were combined. 
 Data augmentation methods on the test data set utilized 
a single approach, the Test-Time augmentation method. Test-

Figure 1: Western Ghats frogs The frogs of the Western Ghats whose advertisement calls were recorded and used in the FROGS-
WGHATS data set. A total of 12 frog species had multiple calls recorded and of the 12 species, only 9 have been photographed. (A) Blue Eyed 
Bush Frog - Raorchestes luteolus, (B) Malabar Gliding Frog - Rhacophorus malabaricus, (C) Ornate Narrow Mouthed Frog – Microhyla ornata 
(D) Rao’s Intermediate Golden Backed Frog- Hylarana intermedius (E) Bombay Bush Frog - Raorchestes bombayensis (F) Indian Dot Frog 
– Ramanella mormorata (G) Ferguson’s Toad – Duttaphrynus scaber (H) Bull Frog- Hoplobatrachus tigrinus (I) Bi-colored Frog – Clinotarsus 
curtipes.
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Time augmentation expands the testing data set and employs 
the Spectral augmentation method on this data set (12). Since 
Test-Time augmentation is applied only to the testing data 
set, the effect of this method is evaluated independently of 
the methods used on the training data sets. 
 These augmentation techniques were applied to three 
different datasets. One is a dataset that comprises of very 
small amount of audio samples from just endemic frogs 
from the Western Ghats region, this will be referred to as 
FROG_WGHATS. The other two datasets are derived of an 
online environmental sound dataset called ESC-50 which 
contains 50 different categories of environmental sounds. 
The ESC-50-SMALL contains portions of the audio samples 
from the entire dataset while ESC-50-FULL contains all  the 
samples in the original dataset (13). All these three datasets 
have different sizes, and that may be a factor that affects the 
performance of the model. 
 We determined the accuracy of each of the data 
augmentation methods and compared it to the baseline 
accuracy that was obtained without any data augmentation. 
This measure was then used to obtain the relative accuracy 
improvement for a single or combined group of data 
augmentation techniques that were applied to the dataset. 
Due to the potential variability of augmentation methods, a 
set of 10 trials were run on each data augmentation method 
for a given dataset. The average accuracy across the 10 trials 
was then used as the measure of the classification accuracy 
for the augmentation(s) technique along with the relative 
accuracy improvement compared to the baseline (Table 1).
  We  also  looked  at  the  “F-score”,  which  combines  the 

precision and recall by determining their harmonic mean. 
Precision and recall are useful when the impact of a false 
positive or  false negative  is more significant on the model’s 
objective.  For  the  environmental  sound  classification,  the 
weight  is  similar meaning  that  F-score  (the  combination  of 
both) is a good metric to use when testing the accuracy. The 
F-score was micro-averaged across the classes and used to 
confirm the trend in accuracy.
  F-scores  and  accuracy  had  similar  trends  with  an  R2 
value of 0.8 (Figure 3). Consequently, the F-score test allows 
the use of the accuracy and the relative accuracy metric to 
confirm  the  hypothesis  in  the  study. On  the  ESC-50-FULL 
dataset, the baseline, un-augmented accuracy was 31%. The 
relative accuracy improvement for Time Shift, Noise Injection, 
Spectral Augmentation, and Test-Time augmentation was 
29%, 28%, 30%, 23% respectively (Figure 4). With all four 
augmentation  methods  on  the  ESC-50-FULL  dataset,  the 
relative accuracy improvement was 38%, and without Test-
Time augmentation, the relative accuracy improvement was 
34% (Figure 4).  
 On the ESC-50-SMALL dataset, the baseline, un-
augmented accuracy was 22%, and the relative accuracy 
improvement for Time Shift, Noise Injection, Spectral 
Augmentation, and Test-Time augmentation was 21%, 20% 
23%, and 29%, respectively. With all four augmentation 
methods on the ESC-50-SMALL dataset, the relative 
accuracy improvement was 49%, and without Test-Time 
augmentation, it was 44% (Figure 4). 
  On  the  FROG-WGHATS  dataset,  the  baseline,  un-
augmented accuracy was 8%, and the relative accuracy 

Figure 2: Sample audio mel spectrogram from the ESC-50 Dataset.  Raw audio data was transformed into a Mel spectrogram with the 
following hyperparameters and augmentation techniques applied: 64 Mels, a 256 hop length, and the number of FFTs was set to 1024 (A) No 
Augmentation (B) Spectral Augmentation (C) Noise Injection (D) Time Shift. Augmentation techniques C and D were performed on the audio 
data before it was transformed into its spectrogram form using torchaudio.transforms.MelSpectrogram() while technique B was done after.
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improvement for Time Shift, Noise Injection Spectral 
augmentation, and Test-Time augmentation was 0%, 0%, 0%, 
and 74%, respectively. With all four augmentation methods 
on  the  FROG-WGHATS  dataset,  the  relative  accuracy 
improvement was 94%, and without Test-Time augmentation, 
it was 0%. A limitation is that while the relative accuracy 
significantly improved, the overall accuracy was still fairly low 
at 16% (Figure 4). 

DISCUSSION
  We sought to evaluate the effects of the CNN’s classification 
accuracy with data augmentation on the frog vocalizations 
dataset, and we hypothesized that data augmentation would 
bolster the performance of the CNN. The augmentation 
techniques were concurrently applied to a known reference 

sound data set to verify the proper application of the 
augmentation methods, serving as an experimental ‘control’. 
The reference dataset has 40 recordings per sound origin. 
Additionally, the same reference dataset was then trimmed 
to have a ‘SMALL’ version which contains 15 recordings per 
sound origin. Each unique sound origin within the ESC-50 
such as a Dog, a Crow or an Insect is known as a class within 
the data set and each class has multiple recording samples. 
In  the  FROG-WGHATS  dataset  each  class  represents  a 
unique frog species with multiple recordings. We analyzed the 
three datasets, which had different amounts of environmental 
sound  recordings  in  their  test  sets.  ESC-50-FULL  with  40 
recordings per class, ESC-50-SMALL with 15 recordings per 
class,  and  FROG-WGHATS  with  1-3  recordings  per  class. 
Data augmentation methods were applied to the training and 

Figure 4: Relative Accuracy Improvement of Data Augmentation. This graph shows all sets of augmentation techniques that were tested 
on the CNN and their accuracies across the 3 datasets. CNN run 6(10) times where 6 represents the number of subsets of augmentation tests 
and 10 represents the number of trials. For every subset of augmentation tests, the data is either augmented or inputted as normal depending 
on what is being tested.

Figure 3: F-score vs classification accuracy. This  figure  displays  the  linear  relationship  between  the average  classification  accuracy 
improve of  10  trials  for  each  combination of  augmentation  techniques applied on  the CNN and  the  corresponding F-scores which were 
also  averaged.  The  accuracy was  derived  from  the  predictions while  the  F-score was  calculated  from  using  sklearn.metrics.f1_score(). 
The coefficient of determination is .7933 indicating that 79.33% of the variation accounted for in the F Score can be explained by the Mean 
Classification Accuracy Improvement
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test data in accordance with the combination of augmentation 
techniques were being tested. The combined augmentation 
effect on both the training and test data was also evaluated.
  We  examined  the  effectiveness  and  efficiency  of  the 
3 augmentation techniques done on the training set. On 
the  ESC-50  FULL  and  ESC-50  SMALL  datasets,  Spectral 
Augmenting produced a relative increase in accuracy by 30% 
and 23%, respectively. Time Shifting increased the accuracy 
by 29% and 21%, respectively.  Noise Injection increased 
the accuracy by 28% and 20%, respectively. The Spectral 
Augmenting randomly masked values on both dimensions 
(frequency and time). Performing this operation directly on the 
spectrogram created data variance through significant visual 
obstruction because it dramatically altered the appearance 
of a feature, given that the random masking successfully 
covered features in a transformation. A possible reason why 
Spectral Augmentation was the most successful technique 
could be due to the dataset not already having any masking 
of values, so the variance added by spectral augmentation is 
unique. When Time Shifted, the audio data (which contains 
amplitude data sampled at a standardized rate) will be 
shifted  by  a  specified  time  instance.  This  efficiently  covers 
up and removes features in the audio data again through a 
visual obstruction, and it eliminates prominent or insignificant 
features, which increases the weights of other features. Time 
Shifting was shown to be very effective, but a dataset can 
account for this variance naturally because it’s unnatural to 
have multiple recordings that are almost the exact same. 
Furthermore,  the  Noise  injection  method  was  based  on  a 
random noise level, which was synthetically generated and 
combined with the raw input sound. The noise level is a 
randomly chosen value between the range of 0 and 1, which 
acts as a scalar for the noise. The noise is an array of samples 
from a standard normal distribution (mean 0, variance 1). The 
product of the noise level and the noise was added to the raw 
input  sound  for modification.  Noise  injection may  not  have 
produced as much of a significant relative accuracy increase 
because of the data collection process. Data was collected 
during  times when  there were many conflicting sounds and 
not only the designated frog sound, meaning the dataset most 
likely accounts for background noise already. This may be the 
cause of Noise Injection’s lower performance.
 Using all four techniques led to a remarkable enhancement 
in  the ML model’s classification accuracy  for  the Frog calls 
dataset by 94% and by 38% and 49% for the ESC-50-FULL 
and  ESC-50-SMALL  datasets  respectively.  Furthermore, 
augmenting test data creates a better representative test 
set and performs better on the smallest testing sizes. On 
the  three  datasets:  ESC-50-FULL,  ESC-50-SMALL,  and 
FROG-WGHATS, test-time augmentation alone improved the 
accuracy significantly. It made the model’s performance go up 
by 23%, 29%, and 74% for each dataset. When we combined 
this with the other three augmentation techniques, the effects 
were even larger – 38%, 49%, and 94%, respectively. Test-
time augmentation works by subjecting the test data to the 
spectral augmentation method synthetically, increasing the 
number of samples and variance in the testing data set. The 
effectiveness of the Test-time augmentation increases as the 
number of available samples in the test set decreases. This 
inverse relationship can be explained by the lack of sufficient 
variance in the test data set and the Test-time augmentation 
increases this variance. 

 A pivotal insight from this study is that with the appropriate 
choice of data augmentation techniques, a small number of 
samples can be used to improve the classification accuracy 
of frog vocalizations. Since data augmentation introduces 
unique perturbations and variance to the training datasets, the 
combined effect of augmentation methods on training and test 
datasets performs better on smaller-sized datasets. Another 
noteworthy takeaway is the number of samples needed in a 
testing set to gauge the model’s performance accurately. After 
noticing a significant improvement in a model’s performance 
after implementing Test-Time data augmentation, it’s clear 
the original testing set was too small to fairly determine the 
model’s performance allowing us to determine a minimum 
sample size. Notably, the study identifies that a robust field-
applicable classifier can be crafted with about 15 data samples 
per class. This finding serves as a crucial threshold for guiding 
future data collection endeavors within the Western Ghats to 
build a field-deployable autonomous frog species identifier.
  Based on these findings, the most suitable augmentation 
technique will depend on its impact on the data and the 
hyperparameters  used.  For  datasets  that  have  low  noise, 
it may be better to use noise injection more than other 
methods, whereas for datasets with samples that have similar 
timestamps, Time Shifting may be more effective. Spectral 
augmenting can then be stated as an augmentation technique 
that is independent of a dataset, since it can be very difficult 
to  alter  its  performance  because  it  is  difficult  to  naturally 
mask values. Methods like Time-Shifting and Noise Injection 
can have a reduced effect because of the already present 
amounts of noise in the dataset and the differences in times 
voice recordings are taken, showing that their efficacy can be 
dependent. However, it’s difficult to mask frequency values in 
audio  samples  naturally,  so Spectral  Augmenting’s  efficacy 
remains more static throughout a variety of datasets, making 
its  performance  independent.    For  this  reason,  spectral 
augmenting  is  most  likely  the  most  effective  and  efficient 
technique  to  use  for  audio  processing.  Furthermore,  when 
different augmentation techniques are used together their 
effects add up because of their unique perturbations. This is 
generally untrue when it comes to increasing the number of 
samples one specific augmentation technique is augmenting. 
  A source of error is mostly likely the type of classification 
that  is being performed on these audio files. In the ESC-50 
FULL and ESC-50 SMALL datasets, the classification problem 
involves discerning different environmental sounds (Dogs, 
roosters,  pigs,  rain,  fire  crackling,  fireworks,  helicopters, 
trains,  etc.).  The  FROG-WGHATS  dataset  comprises  frog 
vocalizations  that  are  in  a  specific  ecosystem.  Classifying 
different environment sounds may be easier than classifying 
different frog species due to the variation in the feature 
extraction process, meaning that there are more prominent 
distinctions in different organisms’ sounds compared to 
distinctions within a population of a given species. Another 
limitation is the difference in the number of classes. Two 
datasets have 50 classes, while the other dataset has 12 
classes.  Classification  done  on  fewer  classes  is  generally 
easier because the random probability of guessing a class is 
higher when the number of classes is lower. 
 There are many more augmentation techniques that are 
done for signal processing on environmental sounds than 
the ones that were explored  in  the study. For example, one 
can perform Pitch Shift (frequency is randomly modified), as 
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well as a Time stretch (sound is randomly slowed or sped 
up) (14). Analyzing the results of the combination of multiple 
augmentation techniques of a deep convolutional neural 
network provides interesting insights. One can also analyze the 
extent to which the combination of augmentation techniques 
will increase a model’s performance, but it will be important 
to examine the dataset to identify if certain techniques are 
dependent on the audio data and identify the techniques that 
will provide the best results. The augmentation techniques 
that are independent of the data should be used. 

MATERIALS AND METHODS
  The  comprehensive  ESC-50  dataset  (ESC-50-FULL) 
encompasses 50 distinct classes, each containing 40 
recordings of environmental sounds. The online public 
datasets called ESC-50 were downloaded from the public 
Github repository called ESC-50, created by Karol Piczak(13). 
Additionally, a reduced subset of ESC-50 (ESC-50-SMALL) 
was considered, maintaining the same 50 classes but 
comprising only 15 recordings per class. 
 The frog vocalizations dataset from the Western Ghats 
(FROG-WGHATS) consisted of 12 classes with 1-3 recordings 
per class. Each of the 12 classes represented a unique frog 
species. 28 individual recordings were collected using a 
commercially available field audio recorder F3 (Zoom) audio 
recorder with an MKE 600 (Sennheiser) shotgun microphone 
with a sampling frequency of 44K Hz. The recordings were 
made in the central region of the Western Ghats between 
January and June of 2023. The species were identified from 
the calls by an expert naturalist who is trained on recognizing 
frog calls, confirming the species visually and, when possible, 
with a photographic record. Pictures of a subset of the species 
were also obtained during this period. The frogs’ vocalizations 
were naturally occurring in their native habitat and frogs were 
not disturbed.     
 The following steps apply to all three datasets. After the 
data was collected, Python-based audio processing and 
machine learning libraries were downloaded and imported for 
use: Pytorch, Numpy, Matplotlib, and Pandas (15-18). Once 
the paths were loaded using pathLib, the raw audio data 
was loaded using Pytorch. The data was split into a training-
testing ratio of 8:2. The audio data was pre-processed to 
meet the requirements to be trained and tested on a model. 
The data was rechanneled from whichever channel it was into 
stereo. Then it was sampled to a standardized sampling rate. 
When audio is initially collected, it is possible that recordings 
were  sampled  at  different  rates,  and  this  can  lead  to  files 
having more or less data although the recordings are of the 
same length. Standardizing the sampling rate will make sure 
that all recordings of the same time frame have the same 
length so they can be processed by the model. The data was 
padded with 0s or truncated in length to ensure that there is 
constant dimensionality in the data, and it can be processed 
by the model. Using previously established functions found 
online, the noise injection data augmentation function and 
the  time  shift  data  augmentation  function  were  defined. 
These functions were used to augment the raw audio data. 
The parameters of the augmentation methods that affect 
these data were randomized. The hyperparameters used for 
Time-Shift were a shift limit of 6 times the length of the audio 
sample. The process involved randomly circulating the data 
by a  value between  (0 and 6  times  the  length of  the audio 

sample). When Time-Shifted, the audio data (which contains 
amplitude data sampled at a standardized rate) will be shifted 
by a specified time instance. The hyperparameters for noise 
injection consisted of the noise level. The Noise level had 
random values from 0 to 1, and the generated noise was 
randomly generated with normally distributed values with 
a mean of 0 and a standard deviation of 1. The raw input 
sound contains values ranging from -1 to 1, so the impact 
of  the  Noise  injection  would  be  significant.  The  raw  audio 
data was converted into a Mel spectrogram with the following 
hyperparameters: 64 Mels, a 256 hop length, and the number 
of  FFTs  was  set  to  1024.  Then  the  spectral  augmenting 
function  was  created  and  defined  based  on  a  previously 
established method found online. Masking was performed 
on both the time and frequency axis with 1 masking per 
axis. The width of each masking was randomized. The test-
time  augmentation  function  was  defined,  which  employed 
spectral augmentation on the testing datasets. After all the 
augmentations are performed, the labels were updated to 
match the length of the data.
  The CNN model (19) used had a total of 11 layers, the first 
layer was a Conv2D layer with 32 kernels and has a filter size 
of 3x3, taking in an input shape of 64, 938, 2. Rectified Linear 
Unit (Relu) was used as the activation function. Next, there is 
a max pooling layer with a 2x2 filter size. The next 6  layers 
contain stacked Conv2D and 3 max-pooling layers. The filter 
sizes for all the Conv2D layers were 3x3 and all the filter sizes 
for  the max-pooling  layers was 2x2. The first Conv2D  layer 
has  64  kernels,  the  second  has  64  kernels,  and  the  third 
has 128 kernels. All the Conv2D layers have Relu as their 
activation function. The next two layers consist of a Flattening 
layer and a Dense layer with 64 neurons and a Relu activation 
function. The final layer is a Dense layer with 50 neurons and 
softmax  activation. When  testing  the model  on  the  FROG-
WGHATS dataset it’s basically the same except the final layer 
has 12 neurons instead of 50. The preprocessing techniques 
can be applied to all the datasets, it is just the final layer of the 
model that differs when testing. The model used the Adam 
optimizer, the Sparse Categorical CrossEntropy loss function, 
and  accuracy  as  a  metric.  For  each  set  of  augmentation 
techniques, the model was run until the rate of change of the 
testing loss was not decreasing. The effectiveness of each 
augmentation technique was determined by comparing the 
results on each of the datasets to identify how differences 
in datasets affect the relative performance of the different 
technique. 
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