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may facilitate development of chemical probes for potential 
therapeutic interventions. 
	 TDP-43,	a	43	kDa	protein,	was	initially	identified	in	1995	
as	a	suppressor	of	HIV-1	gene	expression	(3).	Physiologically,	
TDP-43	 is	 a	 pivotal	 DNA/RNA	 binding	 protein	 involved	
in multiple cellular processes. Its structure comprises an 
N-terminal	 domain	 and	 two	 tandem	 ribonucleic	 acid	 (RNA)	
recognition	 motifs	 (RRMs),	 RRM1	 and	 RRM2,	 followed	 by	
a	 C-terminal	 prion-like	 domain	 (4).	 Of	 note,	 TDP-43	 binds	
to	 nucleic	 acids	 via	 its	RRM	domains,	 contributing	 to	RNA	
processing,	including	splicing,	translation,	and	the	formation	
of	cytoplasmic	stress	granules	that	improve	messenger	RNA	
stability	to	minimize	stress-related	damage	(5).	
 While the C-terminal prion-like domain has been 
extensively	 studied	 due	 to	 its	 prion-like	 activities	 in	 TDP-
43	 cytoplasmic	 aggregation,	 the	 RRM	 domains,	 which	 are	
abundantly found in eukaryotes, also bear responsibility 
for	 cytosolic	 aggregate	 formation	 and	 disease	 phenotypes	
 8.	 Notably,	 Shodai,	 et	 al.	 demonstrated	 that	 RRM1	 readily	
acquires	amyloidogenicity,	which	is	the	tendency	to	produce	
amyloid deposits, under physical stresses and contributes 
to	 pathogenic	 conversion	 of	 TDP-43	 in	 ALS	 (9).	Moreover,	
RRM1	drives	 the	 localization	of	TDP-43	 to	stress	granules,	
whose	 excessive	 formation	 further	 facilitates	 cytoplasmic	
aggregation	of	TDP-43	in	motor	neurons	(10).	Both	simulation	
and	experimental	studies	have	indicated	that	RRM1	exhibits	
structural	and	conformational	 instabilities,	 rendering	 it	more	
susceptible	 to	 the	 formation	 of	 fibrils	 and	 aggregation	 (11).	
These	 findings	 highlight	 the	 significance	 of	 RRM1	 in	 the	
formation	of	TDP-43	aggregates	and	suggest	 that	 targeting	
the	 RRM1	 domain	 with	 small	 molecules	 holds	 promise	 in	
counteracting	 TDP-43	 toxicity;	 however,	 current	 studies	 in	
this area are limited. 
 In our previous study, we discovered that ATP could 
not only increase the thermodynamic stability of TDP 43 
RRM1,	 but	 also	 suppressed	 the	 formation	 of	 amyloid-like	
aggregation	 (22).	 However,	 considering	 the	 multifunctional	
and	degradation-	prone	nature	of	ATP in vivo, it is unsuitable 
for direct therapeutic application due to interference with 
other	 pathways.	 Therefore,	 the	 identification	 and	 design	
of ATP alternatives represents an essential initial step in 
the	 development	 of	 therapeutic	 drugs	 for	 TDP-43-related	
neurodegeneration	disorders.	
	 Thus,	 this	 study	 investigated	 small	 molecules	 with	 the	
potential	to	target	the	ATP-binding	site	on	TDP-43	RRM1	to	
mitigate	 TDP-43	 toxicity.	 Tyrosine	 kinase	 inhibitors	 (TKIs)	
typically	have	ATP-like	structural	features,	often	with	a	binding	
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SUMMARY
TAR DNA binding protein-43 (TDP-43) aggregation 
is a hallmark for many neurodegenerative 
diseases including amyotrophic lateral sclerosis, 
frontotemporal dementia and Huntington’s disease. 
These protein aggregates can disrupt neuronal 
function and contribute to neurodegeneration. 
Previous studies have uncovered that adenosine 
triphosphate (ATP) is a promising molecule to dock 
onto the TDP-43 RNA recognition motif (RRM) region 
to reduce amyloid-like aggregation. This provides a 
potential therapeutic strategy in which chemicals with 
similar binding properties could be selected as drugs. 
Under normal physiological conditions, TDP-43 RRM 
region mediates the binding of nucleic acid with TDP-
43. Therefore, we hypothesized that molecules such 
as tyrosine kinase inhibitors (TKIs), which can bind 
to ATP-binding sites or competitively bind to other 
nucleic acid binding regions, including different 
variants of RRM domains, are of great screening 
interest. We conducted in silico simulations using 
molecular dynamic simulation and virtual screening, 
in which the ATP-binding pocket is introduced in 
docking model. Our results supported our hypothesis 
because five of ten selected binding chemicals 
were TKIs. From the result, we then selected the 
two molecules under maximum concentration 
in bloodstream by conducting further screening 
strategies such as long-term molecular dynamic 
simulation, and Lipinski’s rules testing.

INTRODUCTION
	 Pathogenic	deposits	comprising	TAR	DNA-binding	protein	
(TDP-43)	are	a	distinguishing	feature	found	in	brain	and	spinal	
cord	of	 individuals	affected	by	a	diverse	neurodegenerative	
disease.	 These	 deposits	 have	 been	 acknowledged	 as	 the	
principal	pathogenic	determinant	contributing	to	the	etiology	
of	these	disorders,	leading	to	their	categorization	as	“TDP-43	
proteinopathies”	(1).	Notably,	cytosolic	aggregation	of	TDP-43	
is	evident	in	up	to	97%	of	patients	with	sporadic	amyotrophic	
lateral	 sclerosis	 (ALS)	 and	 approximately	 45%	 of	 patients	
with	 frontotemporal	 lobar	 degeneration	 (2).	 Consequently,	
research	 on	 TDP-43	 offers	 an	 opportunity	 to	 gain	 insights	
into	 the	 progression	 of	 neurodegenerative	 diseases	 and	
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mode	similar	 to	ATP,	and	can	 interact	with	 the	ATP	binding	
pocket	 in	 the	 kinase	 binding	 site.	 Thus,	 we	 hypothesized	
that	TKIs,	which	can	alternatively	bind	 to	ATP-binding	sites	
or	 competitively	 bind	 to	 other	 nucleic	 acid	 binding	 regions	
including	 different	 variants	 of	 the	 RRM	 domain,	 would	 be	
of	 great	 screening	 interest.	 Toward	 this	 end,	 we	 identified	
small	molecules	that	interact	favorably	with	the	ATP-binding	
pocket in silico.	A	 library	of	2500	compounds	was	selected	
for	docking	onto	the	target	site.	Subsequently,	the	top	five	hits	
obtained	 from	 docking	were	 subjected	 to	 further	molecular	
dynamic	simulation	studies,	leading	to	the	identification	of	two	
compounds,	 indacaterol	 8-O-glucuronide	 and	 lumacafftor,	
that	 possessed	 favorable	 binding	 properties.	 These	 results	
suggest	 their	 potential	 as	 ATP	 alternatives	 capable	 of	
antagonizing	 TDP	43	 proteinopathy.	 Our	 study	 serves	 as	
a	 compelling	 example	 of	 implementing	 a	 computational	
approach	to	discover	small	molecules	that	specifically	target	
TDP-43	RRM1.	

RESULTS
Identification of candidates binding to the TDP-43 RRM1-
ATP interface
	 We	 docked	 2500	 compounds	 from	 DrugBank	 against	
the	 target	 TDP-43	 RRM1	 using	 AutoDockTools	 software.	
We	 then	 performed	 free	 energy	 calculations	 using	 gmx_
MMPBSA	package	to	rank	their	binding	affinity.	The	top	ten	
molecules	 with	 the	 highest	 binding	 energy	 to	 the	 TDP-43	
RRM1-ATP	 interface	 were	 identified	 (Table 1).	 A	 detailed	

examination	 revealed	 that	 ATP	 specifically	 binds	 to	RRM1,	
partially	 overlapping	 with	 the	 nucleic	 acid-binding	 site,	 but	
penetrating	deeper	 into	the	cavity	due	to	 its	small	size	(22).	
The	docking	analysis	 revealed	 that	 the	docked	compounds	
displayed	a	great	overlap	with	the	ATP-binding	surface	of	the	
TDP-43	 RRM1,	 mimicking	 the	 interactions	 between	 RRM1	
and	ATP	and	occupying	the	positively	charged	cavity	(Figure 
1).	
	 These	 ten	molecules	exhibited	binding	energies	 ranging	
from	-6.643	to	-7.996	kcal/mol,	lower	than	that	of	ATP	(-4.976	
kcal/mol)	 (Table 1).	 Of	 the	 identified	 candidates,	 half	 were	
TKIs,	 including	nilotinib,	 ponatinib,	midostaurin,	 capmatinib,	
and	imatinib,	thus	supporting	our	hypothesis.	The	druggability	
of molecules refers to the suitability of a compound or molecular 
target	for	development	into	a	therapeutic	drug,	this	was	largely	
determined by their physicochemical properties. Criteria 
such	as	“Lipinski’s	rule	of	five”	(Ro5)	were	applied	to	quantify	
drug-like	properties	in silico to assess the pharmacokinetics 
and	bioavailability	profiles	of	 the	compounds	 (12).	The	Ro5	
includes:	 a	molecule	with	 a	molecular	mass	 less	 than	 500	
Da	 (larger	 molecules	 may	 have	 difficulty	 crossing	 cellular	
membranes,	 limiting	 their	 absorption	and	distribution	within	
the	body),	no	more	 than	5	hydrogen	bond	donors,	no	more	
than	10	hydrogen	bond	acceptors	(hydrogen	bond	donors	can	
form	 interactions	with	water	molecules,	potentially	 reducing	
a	 compound's	 ability	 to	 permeate	 lipid	 membranes),	 an	
octanol–water	partition	coefficient	log	P	not	greater	than	five	
(excessive	 lipophilicity	may	 lead	 to	poor	aqueous	solubility,	
and	 absorption,	 while	 over	 hydrophilicity	 may	 struggle	 to	
penetrate	lipid	barriers).	A	variation	of	the	Ro5	proposed	by	
Veber,	 10	 or	 fewer	 rotatable	 bonds,	 was	 also	 used	 to	 test	
metabolic	stability	and	permeability	of	drugs.
	 Among	 the	 ten	 compounds,	 lumacafftor,	 capmatinib,	

Figure 1: Electrostatic surface potentials of TDP-43 RRM1 in 
complex with various compounds. TDP-43	 RRM1	 is	 shown	 in	
electrostatic	 surface	 potential,	 as	 the	 color	 legend	 indicates,	 the	
red	color	(negative	potential)	represents	negatively	charged	surface	
and	 the	 blue	 color	 (positive	 potential)	 occurs	when	 the	 surface	 is	
positively	charged.	The	corresponding	ligand	is	displayed	in	spheres	
(yellow).	The	ligands	that	exhibited	additional	binding	sites	in	docking	
structures,	 lumacafftor	and	midostaurin,	are	 represented	as	green	
spheres.

Figure 2: Molecular interactions between TDP-43 RRM1 and 
screened compounds. The	 diagram	 portrays	 TDP-43	 RRM1	 in	
cartoon,	while	ATP-perturbed	residues	are	in	sticks	(cyan),	and	the	
ligands	are	 in	sticks	 (yellow	or	green).	The	 inset	provides	detailed	
interactions	between	the	protein	and	its	corresponding	compound.
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and	 imatinib	 fulfilled	 all	 four	 Ro5	 rules,	 indicating	 their	
favorable pharmacokinetic properties. In contrast, nilotinib 
and	azilsartan	medoxomil	violated	two	rules,	primarily	due	to	
their	high	molecular	weight	 (>500	g/mol)	and	octanol-water	
partition	coefficient	exceeding	log	P	(Table 1).	The	remaining	
compounds	violated	only	one	rule,	reflected	in	slightly	higher	
molecular	weights	(500–600	g/mol).	 It	should	be	noted	that	
since	 all	 the	 selected	 compounds	 are	 FDA-approved	 and	
typically	administered	orally,	strict	adherence	to	Ro5	was	not	
followed. 

Determinants of binding affinity: role of H-bonds, pi-
cation interactions, and binding sites
	 Among	the	top-ranked	compounds,	nilotinib	demonstrated	
the	highest	affinity	(-7.996	kcal/mol)	towards	RRM1.	Detailed	
examination	of	the	ligand-protein	interactions	was	performed	
by	PyMOL	2.5	showed	that	nilotinib	forms	two	H-bonds	with	
TDP-43	RRM1,	which	contribute	to	its	high	affinity,	along	with	
potential pi-cation interactions, and hydrophobic interactions. 
Ponatinib, the second-ranked compound, did not form any 
H-bonds	but	pi-cation	interactions.	Dihydroergocryptine	and	
dihydroergocornine	 have	 similar	 hydrophobic	 interaction	
with	TDP-43	RRM1.	While	dihydroergocryptine	 formed	one	
more	 H-bonds	 with	 K145	 and	 pi-cation	 interactions	 with	
K136,	explaining	its	stronger	binding	affinity	(-7.467	kcal/mol)	
compared	 to	 dihydroergocryptine	 (-7.223	 kcal/mol)	 (Table 
2).	 Indacaterol	8-O-glucuronide	formed	one	H-bond	and	pi-
cation	interactions	with	K136,	K145,	and	K181,	resulting	in	a	
binding	score	of	-7.161	kcal/mol	(Figure 2).	

	 Azilsartan	 medoxomil,	 the	 third-to	 last	 compound	 in	
binding	energy	(-6.942	kcal/mol),	did	not	 form	any	H-bonds	
but formed three pi-cation interactions. Capmatinib, the 
second	 last	 molecule	 in	 binding	 energy	 formed	 pi-cation	
interactions with the aforementioned three residues and 
an	 additional	 H-bond	 with	 G146,	 similarly	 to	 azilsartan	
medoxomil.	However,	the	greater	distance	between	the	ligand	
and	the	three	residues	led	to	a	slightly	lower	affinity	(-6.923	
kcal/mol).	The	molecule	with	 least	binding	energy,	 imatinib,	
could	not	form	any	H-bonds	and	exhibited	only	two	pi-cation	
interactions,	 thereby	 resulting	 the	 lowest	 binding	 affinity	
(-6.643	kcal/mol)	(Table 2).	
 Notably, lumacafftor and midostaurin, each of them 
exhibited	 two	 potential	 ways	 to	 bind	 to	 RRM1	 (Figure 1).	
Lumacafftor	formed	H-bonds	with	G110,	K145,	and	Q182	on	
RRM1	and	pi-cation	 interactions	with	K136.	 In	 comparison,	
the	other	binding	configuration	established	H-bonds	with	K145	
and	Q184,	suggesting	that	one	of	these	two	configurations	may	
represent	as	a	byproduct	when	one	configuration	is	desired	
after	the	reaction,	partially	occupying	the	RRM1	and	reducing	
the	 yield	 of	 main	 product.	 Unlike	 lumacafftor,	 midostaurin	
exhibited	 same	 pi-cation	 interactions	 in	 both	 binding	 sites.	
The residue composition of hydrophobic interaction clusters 
was	similar	in	both	states,	making	it	difficult	to	determine	the	
primary	binding	configuration.	
 In summary, the formation of H-bonds and pi-cation 
interactions	 played	 crucial	 roles	 in	 determining	 the	 binding	
affinity,	with	particular	emphasis	on	K145	of	RRM1	 forming	
H-bonds	with	many	molecules	 including	nilotinib,	ponatinib,	

Table 1: Drug-like properties of top 10 compounds selected by in silico screening.
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dihydroergocryptine,	 and	 lumacafftor,	 which	 contributed	 to	
the	superior	docking	affinities	of	these	molecules	to	others.	

Binding affinities of compound-protein complexes 
revealed through MS simulations
 To validate and quantify the stability of compound-protein 
complexes,	 we	 performed	 a	 preliminary	 10-ns	 molecular	
dynamics	 (MD)	 simulation	 for	 all	 10	 complexes	 in silico 
(Figure 3).	The	binding	free	energy	of	individual	compounds	
and	 ligand-protein	 complexes	 are	 shown	 in	 Table 1 and 
Table 2,	 respectively.	With	 the	exception	of	 imatinib	(-13.24	
kcal/mol),	all	compounds	hold	stronger	binding	capabilities	in	
complex	towards	RRM1	compared	to	ATP	(-13.24	kcal/mol),	
with	values	ranging	from	-33.82	to	-15.85	kcal/mol	(Table 2).	
This is consistent with the above in silico studies, in which 
imatinib	showed	lowest	binding	capacity	due	to	the	absence	
of	H-bonds	and	only	two	pi-cation	interactions	with	RRM1.	
To further elucidate the conformational stabilization of the 
top	 potential	 compounds,	 we	 performed	 a	 more	 extensive	
50-ns	 MD	 simulation	 for	 the	 top	 five	 selected	 compounds	
with	 the	 highest	 binding	 free	 energy,	 namely	 indacaterol	
8-O-glucuronide,	 lumacafftor,	 midostaurin,	 azilsartan,	 and	
ponatinib.	 The	 binding	 free	 energies	 were	 calculated	 and	
ranged	 from	 -41.32	 to	 -17.41	 kcal/mol,	 with	 midostaurin	
displaying	 the	 highest	 and	 ponatinib	 the	 lowest	 affinity	
against	 TDP-43	 RRM1	 (Table 3).	 The	 relatively	 high	
binding	energy	of	ponatinib	could	be	attributed	to	 its	 limited	
electrostatic interactions and non-polar interactions with the 
protein. However, electrostatic interactions are important 
for	 binding	affinity	 of	 both	 indacaterol	 8-O-glucuronide	and	
lumacafftor,	 which	 ranked	 the	 first	 and	 second	 among	 the	
five	compounds,	 respectively.	While	 the	binding	capabilities	
resulting	 from	 polar	 interactions	 were	 relatively	 weaker	 for	
indacaterol	 8-O-glucuronide	 and	 lumacafftor.	 The	 ∆Gsol	
values	 of	 indacaterol	 8-O-glucuronide	 and	 lumacaftor	

are	 relatively	 high	 with	 143.12	 kcal/mol	 and	 105.86	 kcal/
mol respectively. This indicates the presence of solvent 
molecules	also	negatively	influenced	the	binding	affinity	with	
RRM1,	further	inducing	weaker	binding	affinities	of	these	two	
compounds.	 Moreover,	 azilsartan	 medoxomil,	 the	 second-
to-last	compound	in	terms	of	binding	energy,	exhibited	lower	
energy	contributions	from	electrostatic	interactions	compared	
to	ponatinib	but	higher	than	those	of	midostaurin,	lumacafftor,	
and	indacaterol	8-O-glucuronide.

Dynamic conformational changes of compound-protein 
complexes
	 To	gain	a	dynamic	perspective	on	conformational	changes	
occurring	 during	 the	 50-ns	 MD	 simulations,	 we	 computed	
the	 root-mean-square	 deviation	 (RMSD)	 and	 root-mean-
square	fluctuation	(RMSF)	for	each	complex,	and	 individual	
compound	without	RRM1	(Table 4).	The	RMSD	reflects	the	
overall coordinate deviations at each time point, and these 
values	of	the	complexes,	were	in	the	range	of	1.38	to	2.57	Å.	
To	assess	the	flexibility	of	residues	during	the	MD	simulations,	
the	RMSF	of	Cα-atoms	was	calculated	for	the	five	complexes	
to	 represent	 fluctuations	 of	 coordinates	 at	 residue	 level	
throughout	the	simulation.	For	both	RMSD	and	RMSF	values,	
high	 fluctuation	 may	 indicate	 instability	 or	 inconsistency	 in	
maintaining	conformation,	which	is	undesirable	for	durability	
and	molecular	docking.
	 Notably,	 both	 the	 midostaurin-RRM1	 and	 lumacafftor-
RRM1	complexes	had	average	RMSD	values	higher	than	that	
of	 the	ATP	complex	(1.86	Å)	(Table 4).	Despite	midostaurin	
exhibiting	 the	 lowest	 binding	 energy,	 midostaurin-RRM1	
had	 the	 highest	 RMSD,	 showing	 significant	 fluctuations	
after	 12	 ns	 compared	 to	 the	 unbound	 state.	 Lumacafftor-
RRM1,	characterized	by	 the	second	 largest	RMSD	value	of	
2.32	Å,	 induced	noticeable	fluctuations	within	 the	20-30	ns	
timeframe. The distinct orientations adopted by lumacafftor, 
as	observed	in	the	docking	results,	may	contribute	to	these	

Table 2: The binding free energies of the ligand-protein 
complexes in 10-ns MD simulations. ∆G	values	signify	the	average	
binding	 energies	 of	 the	 compound-TDP-43	 RRM1	 complexes,	
obtained	 from	 three	 independent	 10-ns	 MD	 simulations.	 Control	
groups	ATP-RRM1	and	 free	RRM1	are	excluded	 from	 the	 ranking	
for	comparison.	Conformers	in	which	the	ligand	dissociated	from	the	
binding	pocket	were	excluded	from	the	analysis.

Table 3: The binding free energies of the ligand-protein 
complexes in 50-ns MD simulations. ∆Gbind	 values	 represents	
the	binding	 free	energies	of	 the	five-top	compound-TDP-43	RRM1	
complexes,	averaged	from	three	independent	50-ns	MD	simulations.	
∆Gele:	electrostatic	free	energy,	∆Gvdw:	van	der	Waals	free	energy,	
∆Gpol:	electrostatic	polar	components	of	the	salvation	free	energy,	
∆Gnonpol:	non-polar	component	of	the	salvation	free	energy,	∆Gsol:	
solvation	energy.



26 APRIL 2024  |  VOL 7  |  5Journal of Emerging Investigators  •  www.emerginginvestigators.org

https://doi.org/10.59720/23-222

notable	fluctuations.	Lumacafftor	itself	had	the	highest	RMSD	
value	compared	with	other	compounds.	The	RMSD	values	of	
RRM1	in	the	complex	with	indacaterol	8-O-glucuronide	and	
ponatinib	were	comparable,	with	values	of	1.41	and	1.38	Å,	
respectively.	However,	 for	compounds	alone	without	RRM1,	
the	RMSD	 value	 of	 indacaterol	 8-O-glucuronide	was	 lower	
than	 that	 of	 ponatinib,	 indicating	 larger	 fluctuations	 of	 the	
latter	compound	in	the	complex.	The	RMSD	value	of	RRM1	
in	 complex	 with	 azilsartan	 medoxomil	 was	 slightly	 higher	
than	those	of	the	Indacaterol	8-O-glucuronide	and	ponatinib	
complexes,	 but	 lower	 than	 that	 those	 of	 the	 midostaurin	
and	 lumacafftor	 complexes.	 Throughout	 the	 simulations,	
the	 RMSD	 of	 RRM1	 in	 the	 complex	 with	 indacaterol	
8-O-glucuronide	and	ponatinib	remained	relatively	stable.	
	 The	 RMSF	 values	 for	 all	 complexes	 were	 below	 1	Å,	
ranging	 from	 0.68	 to	 0.84	 Å.	 It	 should	 be	 noted	 that	 all	
compounds	 were	 able	 to	 stabilize	 the	 fluctuations	 of	 the	
C-terminal	 region.	 Although	 lumacafftor	 had	 a	 weaker	
stabilizing	effect	on	the	C-terminal	region,	it	behaved	almost	
the	same	as	when	it	was	unbound.	Consistent	with	the	RMSD	
analysis,	the	RMSF	of	RRM1	in	complex	with	ponatinib	and	
indacaterol	 8-O-glucuronide	 showed	 comparable	 and	 the	
lowest	values.	In	the	case	of	indacaterol	8-O-glucuronide,	it	
showed	slightly	weaker	stability	around	K140,	which	is	located	
in	 the	 large	 loop	 formed	by	β2	and	β3.	 Further	 analysis	 of	
the secondary structure unraveled that midostaurin and 
azilsartan	 medoxomil	 induced	 structural	 changes	 over	
residues	 179–182	 transitioning	 from	 a	 turn-to-unstructured	
and	turn-to-alpha	helix,	respectively.	

DISCUSSION
	 In	 prior	 literature,	 the	 selection	 of	 ligand	 binding	 sites	
has	often	been	left	open	to	any	region	within	the	entirety	of	
the	 target	 molecule	 (18).	 The	 present	 model	 distinguishes	

itself	by	precisely	designating	the	ATP-binding	pocket	as	the	
focal	 point	 of	 interest.	 This	 strategic	 approach	 delimits	 the	
search	 scope	 for	 potential	 binding	 candidates	 and	 further	
defines	the	 intended	 ligand	function,	which	prevent	TDP-43	
aggregation	 through	 coverage	 of	 the	 β-strands	 within	 the	
ATP-binding	pocket.	The	outcome	of	this	study	underscores	
the effectiveness of this approach, with a noteworthy 
observation	 that	 approximately	 half	 of	 the	 identified	
molecules	are	classified	as	TKIs.	This	observation	attests	to	
the	robustness	of	the	model,	suggesting	promising	avenues	
for	the	construction	of	future	virtual	screening	models	aimed	
at	identifying	alternative	ligand	drugs	for	established	protein-
ligand	 complexes.	 The	 selected	 drugs	 indeed	 comprise	 a	
significant	proportion	of	TKIs.	They	competitively	binding	 to	
the	 ATP-binding	 site	 of	 tyrosine	 kinases	 (17).	 This	 binding	
action effectively curbs the aberrant behavior of mutated 
TKs,	thereby	hindering	dysregulated	signal	cascades	driven	
by	ATP	 interactions.	Given	 the	high	degree	of	conservation	
in	ATP	binding	sites	across	various	ATP-binding	proteins	and	
the	overlapping	binding	cavities	shared	between	kinases	and	
TDP-43,	coupled	with	the	orientation	of	the	virtual	screening	
model	 toward	 the	 ATP-binding	 pocket,	 the	 emergence	 of	
TKIs	as	a	substantial	portion	of	the	repurposed	drug	results	
is rational. This outcome can be attributed to the intrinsic 
alignment	of	the	model's	design	and	the	functional	attributes	
of	TKIs.	
	 Through	virtual	screening	and	MD	simulations,	two	desirable	
molecules,	 lumacafftor	 and	 indacaterol	 8-O-glucuronide,	
were	 identified.	 Of	 note,	 lumacafftor	 shows	 inferior	 drug	
properties	 than	 indacaterol	 8-O-glucuronide.	This	 is	mainly	
because lumacafftor has two distinct conformations to dock 
on	 TDP-43	 RRM1;	 it	 is	 therefore	 predicted	 that	 this	 ligand	
could waver between two conformations, which may partially 
compromise	its	stability	and	MD	in vivo,	resulting	in	its	inferior	
druggability	compared	to	indacaterol	8-O-glucuronide.	
	 The	colocalization	and	physical	association	among	FUS,	
RBM45,	and	TDP-43	in	ALS	has	been	documented,	implying	
that	 the	 RRM-binding	 agents	 elucidated	 in	 this	 study	 may	
possess therapeutic potential across a broader spectrum 
of	 neurodegenerative	 disorders	 (15,16).	 Although	 our	 study	
yields	 valuable	 insights,	 it	 is	 essential	 to	 accentuate	 the	
need	for	extended	exploration.	This	entails	not	only	in-depth	
preclinical	 and	 clinical	 investigations	 but	 also	 a	meticulous	
examination	 of	 conformational	 dynamics,	 allosteric	 sites,	
and	 the	 application	 of	 a	 broader	 structural	 context	 for	
virtual	 screening	 experiments.	 Such	 endeavors	 are	 pivotal	
to	 advancing	 our	 understanding	 of	 potential	 therapeutic	
interventions and their translational implications.
	 To	 summarize,	 neurodegenerative	 diseases	 marked	 by	
TDP-43	 proteinopathy	 necessitate	 targeted	 interventions.	
Employing	a	computational	approach,	we	investigated	small	
molecules	binding	to	the	ATP-binding	site	on	TDP-43	RRM1.	
Utilizing	in silico	screening	and	subsequent	simulations,	two	
compounds,	 indacaterol	 8-O-glucuronide	 and	 lumacafftor,	
hold	significant	promise	as	lead	compounds,	offering	valuable	
structural	insights	into	the	design	of	anti-TDP-43	aggregation	
agents,	 and	 expediting	 the	 development	 of	 effective	
interventions	for	TDP-43-associated	neurodegeneration.	This	
work underscores the potential for computational methods in 
drug	discovery	and	provides	a	foundation	for	developing	anti-
TDP-43	 aggregation	 agents	 for	 neurodegenerative	 disease	
intervention. 

Table 4: The topology and dynamics variations of the 
compound-protein complexes through 50-ns simulations. 
∆fCt	denotes	 the	average	differences	between	 the	complexes	and	
the	 apo	 state,	 calculated	 across	 residues	 180-184.	Rg	 and	SASA	
are	 abbreviations	 of	 radius	 of	 gyration	 and	 solvent	 accessible	
surface area, respectively. The descriptors are utilized to assess 
the	 conformational	 changes,	 flexibility,	 compactness,	 and	 surface	
accessibility	of	compound-protein	complexes.
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MATERIALS AND METHODS
Preparation of the compound library and protein 
structure
	 We	 sourced	 a	 library	 consisting	 of	 2500	 FDA-approved	
drugs	 from	 the	 DrugBank	 and	 Zinc	 databases,	 and	 then	
converted	drugs	into	three-dimensional	(3D)	structures	using	
the	Open	Babel	package	(version	2.3.1)	(18,19).	We	retrieved	
the	 solution	 structure	 of	 TDP-43	 RRM1	 structure	 from	 the	
Protein	Data	Bank	(ID	2CQG)	as	the	template	for	our	study,	
the	topology	of	which	is	very	similar	to	those	in	the	complex	
with	nucleic	acids.	We	selected	the	ATP-binding	pocket	within	
the	 first	 conformer	 of	 this	 structure	 as	 the	 primary	 binding	
site	of	interest	(Figure 3),	which	is	composed	of	W113,	K114,	
K136,	K137,	K145,	K176,	K179,	and	K181.

Structure-based in silico screening
	 To	identify	the	potential	candidates	targeting	the	TDP-43	
RRM1,	 we	 employed	 a	 rigorous	 and	 systematic	 structure-
based	 in	silico	molecular	docking	approach.	Control	groups	
including	apo	RRM1,	which	is	the	inactive	or	unbound	form	of	
the	protein	RRM1,	as	well	as	RRM1	in	complex	with	ATP	were	
also included for comparison. We utilized he AutoDockTools 
software,	 an	 integral	 component	 of	 the	 MGLTools	 1.5.7	
package,	 for	optimizing	and	analyzing	structures.	The	 initial	
steps	 of	 the	 docking	 preparation	 involved	 adding	 missing	
atoms,	assigning	charges,	and	defining	the	region	of	interest	
within	 the	 protein	 for	 ligand	 binding.	 We	 them	 performed	
he	 molecular	 docking	 simulations	 using	 AutoDock	 Vina,	 a	
widely	 used	 protein-ligand	 program	with	 predefined	 search	
space	 and	 docking	 parameters.	 Specifically,	 we	 docked	
the	 refined	 3D	 structures	 of	 drugs	 sourced	 from	DrugBank	
against	 TDP-43	RRM1.To	 ensure	 accurate	 sampling	 of	 the	
binding	pocket,	specific	parameters	for	the	3D	grid	box	were	
defined	as	 follows:	 box	 size	 (Å)	 (x,	 y,	 z)	 =	 (14,	 20,	 16)	 and	
center	 coordinates	 (Å)	 (x,	 y,	 z)	=	 (12,	 -7.5,	0.5).	We	set	 the	
exhaustiveness	 to	 24,	 allowing	 for	 thorough	 exploration	 of	
the	conformational	space,	while	generating	10	conformers	to	
capture	diverse	ligand	binding	orientations.
	 To	 validate	 the	 binding	 efficiencies,	 we	 conducted	 a	
redocking	 experiment.	 We	 re-docked	 the	 obtained	 binding	
configuration	of	the	ligand	onto	the	same	active	binding	site	

of the protein to ensure the consistency and reliability of the 
docking	results.	All	docking	protocols	remained	unchanged,	
and	the	grid	parameters	were	kept	constant.	We	shortlisted	the	
ligands	with	favorable	binding	energies	for	further	molecular	
dynamic	 simulation	 studies.	 The	 detailed	 examination	 of	
ligand-protein	interactions	was	performed	by	PyMOL	2.5.

Molecular dynamics simulation
	 We	conducted	a	preliminary	10	nanoseconds	MD	simulation	
using	GROMACS	v5.1.4	 for	 the	 top	 10	 complexes	with	 the	
lowest	 binding	 energy.	 Then	we	performed	more	 extensive	
50	nanoseconds	simulations	for	top	five	complexes	with	the	
lowest	binding	energy.	To	create	the	simulation	environment,	
we	 embedded	 the	 complexes	 in	 a	 predefined	 TIP3P	water	
model	 within	 a	 periodic	 cubic	 box,	 where	 the	 minimal	
distance	of	 12	Å	was	maintained	between	any	 ligand	atom	
and	the	box	edge	to	prevent	interactions	with	periodic	images	
throughout	 the	MD	 simulations.	During	 the	 simulations,	we	
employed Newton’s classical equation of motion to calculate 
the atomic movements over time. In addition, we determined 
electrostatic	 potentials	 using	 the	 widely	 used	 6-31G	 (d,p)	
basis	 set	 in	 Gaussian	 16	 and	 subsequently	 converted	 into	
partial	 charges	 through	 the	 Antechamber	 program.	 The	
protein	and	ligand	were	subjected	to	the	AMBER99SB-IDLN	
all-atom	 force	 field	 and	GAFF	 force	 field,	 respectively.	 The	
system	was	then	neutralized	by	adding	Na+	and	Cl-	ions	using	
GROMACS	genion	 tool,	 achieving	 an	 ionic	 strength	 of	 150	
mM.	Following	neutralization,	the	system	underwent	an	initial	
energy	minimization	using	the	steepest	descent	algorithm	to	
achieve	force	convergence	of	<1000	kcal/mol/nm.	Once	the	
initial minimization was completed, we equilibrated the whole 
system	 for	 5	 ns	 at	 300	K	 degree	 and	 1	bar	 pressure	 using	
canonical	 	and	 the	 isothermal-isobaric	ensembles,	allowing	
for	keeping	the	box	volume	minimized.
	 We	 computed	 the	 long-range	 electrostatic	 interactions	
using	 the	particle-mesh	Ewald	summation,	and	constrained	
bond	 lengths	 through	 LINCS	 algorithm.	 Each	 compound-
protein	 complex	 underwent	 three	 independent	 runs.	 In	
addition	 to	 the	 five	 complexes,	 two	 critical	 control	 groups	
were incorporated, namely the protein in apo form and the 
protein	complexed	with	ATP.	We	conducted	 the	 trajectories	
analysis	by	excluding	the	initial	20	ns	for	system	equilibrium.	
We	 evaluated	 the	 stability	 of	 the	 simulations	 by	measuring	
RMSD	and	RMSF	throughout	the	trajectories.	We	analyzed	
the secondary structure behaviors, and performed free 
energy	calculations	(20,21).
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