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insights into the microstructural properties of brain networks 
that may hold the key to understanding neural control deficits 
(5). Thus, there is an urgent need for new methodologies that 
can provide a more comprehensive map of brain dysfunction 
in AD without causing harm to patients.
 Diffusion tensor imaging (DTI) is a non-invasive 
neuroimaging technique that shows promise as an alternative 
tool for the detection of AD (6). DTI measures the diffusion 
of water molecules along the white matter tracts, providing 
insights into the structural connectivity of the brain (7). This 
modality has the potential to capture subtle variations in the 
microstructure of brain networks that may be indicative of 
neural control deficits related to AD. The neural system is a 
complex network facilitating point-to-point connections for 
rapid coordination. In AD patients, this intricately structured 
network becomes disrupted, resulting in impaired neural 
control. This disruption is a critical factor contributing to the 
deficits in learning and memory observed in AD (8). Building 
upon the abilities of DTI, brain controllability analysis offers 
a sophisticated tool for understanding the complex interplay 
between different brain regions (9). Network controllability 
is a recent concept in network neuroscience that aims to 
forecast how individual cortical sites influence overall network 
states and their transitions, offering a cohesive framework for 
understanding local effects on global brain dynamics (10). 
This approach, grounded in control theory, offers a dynamic 
interpretation of brain states, contrasting with conventional 
static network metrics like efficiency, degree, and strength 
(11). By analyzing the network architecture of the brain, one 
can evaluate how efficiently information is propagated and 
processed, thereby providing potential indicators of neural 
control deficits. While traditional graph-based metrics reveal 
the local properties and significant roles of various brain 
areas within their network architectures, control theory-based 
network measures uniquely quantify the capability of a single 
brain region to induce changes in overall brain behavior, 
transitioning from one state to another (9).
 Brain controllability, a concept derived from control 
theory, offers a groundbreaking tool for understanding neural 
dynamics (9). Unlike traditional graph theory, which provides a 
descriptive measure of network structures, brain controllability 
furnishes predictive insights into how these neural networks 
might evolve over time. This becomes profoundly important 
when investigating cognitive control impairments in AD. 
Within the brain, controllability metrics measure the ability 
of individual regions to initiate changes that affect broader 
neural circuits, steering them from any initial state to a 
specific, desired state within a finite time. This application 
of brain controllability to the study of AD provides crucial 
framework for assessing the cognitive control impairment. 
Understanding brain controllability could offer invaluable 

Predictions of neural control deficits in elders with 
subjective memory complaints and Alzheimer’s disease

SUMMARY
Alzheimer’s disease (AD) is a common disease, 
affecting over 6 million elders in the U.S in 2024. 
However, AD remains untreatable due to the absence 
of an effective biomarker to assess the underlying 
deficits in cognitive control. Disruptions in the brain's 
control systems are key factors in the learning and 
memory impairments that define AD. In this study, 
we hypothesized that we could predict neural control 
deficits in elders with subjective memory complaints 
(SMC) and AD patients using Diffusion Tensor Imaging 
(DTI) data and brain controllability analysis. DTI is 
a non-invasive neuroimaging tool that detects how 
fluid travels along the white matter tracts inside the 
brain. To test our hypothesis, we used the DTI data 
of 12 elders with SMC, 12 AD patients, and 12 healthy 
subjects from the open-source dataset Alzheimer's 
Disease Neuroimaging Initiative. First, we constructed 
individual brain connectivity networks. Using graph 
theory and brain controllability analysis, we assessed 
node degree and controllability. We then averaged 
these measures across brain areas to calculate global 
metrics for each subject. Results illustrated that the 
node degree could not identify SMC and AD from 
healthy subjects, while the controllability measure 
could differentiate SMC and AD from healthy subjects 
and distinguish between SMC and AD. In conclusion, 
this study provides a promising biomarker for 
detecting neural control deficits in elders with SMC 
and AD patients for future clinical application.

INTRODUCTION
 Alzheimer’s disease (AD) is a prevalent and progressive 
neurodegenerative condition marked by memory loss, 
cognitive impairments, and changes in behavior (1). It stands 
as one of the primary causes of illness and death among the 
elderly, impacting over 6 million people in the United States 
as of 2024 (2). Despite extensive research and many clinical 
trials, AD continues to be incurable (3). A major obstacle in 
creating effective treatments and prevention strategies for AD 
is the lack of dependable biomarkers to evaluate the neural 
control deficits that are fundamental to the cognitive difficulties 
associated with the disease (4). A better understanding of 
these neural control deficits could provide an avenue for 
early diagnosis and targeted treatment strategies, thereby 
improving clinical outcomes. Conventional neuroimaging 
techniques, including magnetic resonance imaging (MRI) 
and positron emission tomography (PET) scans, offer limited 
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insights into the neural deficits that contribute to cognitive 
control impairment in AD, thereby opening new avenues for 
diagnosis and targeted interventions and treatments. 
 The objective of the present study was to explore the 
potential of utilizing DTI data along with brain controllability 
analysis to predict neural control deficits in elders with 
subjective memory complaints (SMC) and patients with 
AD. Individuals with SMC experience cognitive symptoms 
or concerns without demonstrable alterations in objective 
psychometric assessments (12). SMC describes self-reported 
memory issues not evident in standard cognitive tests with no 
clinical signs of significant memory loss, while AD diagnosis 
combines clinical assessment, imaging, and biomarkers (13). 
While SMC may be an early sign of AD, progression to AD 
is not certain and often precedes mild cognitive impairment 
(MCI), a detectable decline not as severe as dementia (13). 
SMC increases the risk of developing MCI and possibly 
AD but not for everyone (13). The inclusion of SMCs in this 
study aimed to explore neural control patterns that may be 
indicative of an early stage of AD, which could be pivotal for 
prompt diagnosis and intervention. 
 For this study, we employed an open-source dataset from 
the Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
comprising DTI data from 12 elders with SMC (F/M: 7/5, 
age: 72.3 ± 3.7), 12 patients with AD (F/M: 6/6, age: 74.3 ± 
8.5), and 12 healthy controls (HC) (F/M: 7/5, age: 72.1 ± 6.4) 
(14). We hypothesized that brain controllability measures 
could differentiate between healthy subjects, those with 
SMC, and patients with AD, thereby providing a promising 
biomarker for clinical applications. The need for a reliable, 
non-invasive biomarker to diagnose and monitor Alzheimer’s 
disease is pressing. Our findings indicated that node degree 
measurements were insufficient to differentiate SMC and AD 
from healthy individuals. However, the brain controllability 
metrics were significantly more effective in identifying 
neural control deficits, distinguishing SMC and AD from 
healthy subjects and from each other. In conclusion, brain 
controllability measures showed promise as biomarkers for 
the detection of neural control deficits in elderly individuals 
with SMC and AD, with potential for future clinical applications.

RESULTS
Brain Connectivity Network of HC, SMC, and AD
 The overall data processing procedures consisted of brain 
network construction, graph theory analysis, controllability 
analysis and statistical comparison (Figure 1). We first 
plotted the averaged structural brain connectivity network in 
each group to visualize the connectivity distribution in each 
group (Figure 2). From the results, we could not visualize the 
difference between groups. We then calculated the global 
node degree, defined by the average of all connections across 
various brain areas, for each individual. We further employed 
the student t-test to compare the global node degree between 
different groups of subjects, including HC, SMC, and AD . The 
graphical measurement of node degree could not differentiate 
between HC, SMC, and AD (P > 0.05) (Figure 3).

Global Brain Controllability of HC, SMC, and AD
 We then calculated the brain controllability of each 
subject’s brain area based on the constructed brain 
connectivity network and averaged across brain regions in 
each subject. Student t-test was then utilized to compare the 

global controllability between HC, SMC, and AD subjects. 
FDR correction was further applied to correct the p-value 
after multiple comparisons. From the results, we can see that 
the there is a significantly decreased trend from HC to SMC 
(P = 0.0175), HC to AD (P = 0.0001), and SMC to AD (P = 
0.0303) (Figure 4).  

DISCUSSION
 This study set out to explore the potential utility of DTI 
combined with brain controllability analysis in assessing neural 
control deficits in AD and SMC. Our findings demonstrated 
that brain controllability measures could be more effective 
than traditional node degree measures for distinguishing 
between healthy elders, those with SMC, and patients with 
AD. The results not only verified our hypothesis but also open 
new avenues in the identification of a non-invasive biomarker 
for cognitive control deficits related to AD and SMC.
 AD is a debilitating condition that affects over 6 million 
elderly individuals in the U.S. as of 2024. The absence of 
reliable biomarkers for early detection remains a significant 

Figure 1: Data Pre-Processing and Post-Processing 
Procedures. We first processed the DTI data to calculate the number 
of streamlines connecting each two brain areas and constructed the 
brain connectivity network. We employed graph theory to compute 
the node degrees and applied the brain controllability analysis to 
calculate the controllability of each single brain area. Furthermore, 
we averaged the node degree and controllability measures across 
all brain areas, respectively, to compute the global node degree and 
global controllability of each single subject and performed statistical 
analysis to compare the node degree and brain controllability 
between various groups.
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barrier to effective diagnosis and treatment. Therefore, the 
findings of this study are important, as they could offer an 
avenue for early detection of cognitive decline to choose 
alternative intervention and targeted therapies, potentially 
altering the trajectory of these degenerative conditions.
 Our findings draw strength from previous research that 
also emphasized the utility of brain network control theory in 
understanding various neural and cognitive processes (9). 
The concept of ‘controllability’ in the structural brain networks 
adds theoretical robustness to our study (9). In the context of 
AD, a prior study identified altered white matter integrity using 
DTI, which aligns with our method and results (Figure 4) (15). 
Our findings also showed that the overall control capabilities 
of the brain in AD patients were compromised, potentially 
making it difficult for them to regulate their cognitive state. 
This study not only supports our choice of DTI as a valid 
imaging technique but also underscores the important role of 
brain controllability as a potential biomarker for evaluating the 
neural control deficits as it can be used to identify AD from HC 
and SMC. When this controlling capability is compromised in 
AD, the ability for task-specific modulations and the adaptive 
tuning of neural dynamics may be impaired, contributing to 
observable cognitive decline. Further, previous evidence 
identified structural network alterations in AD and SMC, 
supporting our focus on these conditions for identifying AD 
and SMC (16). 
 The ability to accurately diagnose AD and SMC at an early 
stage would represent a key step in neurology and geriatric 
medicine. Our results could help provide clinicians with a 
non-invasive, reliable biomarker that can be used for early 
detection and monitoring of AD and SMC. This would not 
only enable more timely interventions but also offer patients 
and their families an opportunity to make informed decisions 
about care and treatment options. The clinical translation of 
our findings could thereby lead to more personalized medicine 
approaches and ultimately improve patient outcomes.
 While our study offers important contributions, it is 
essential to consider its limitations. The generalizability of 
our findings may be constrained by our small sample size 
of 12 subjects per group, all drawn from the ADNI database. 
To substantiate the conclusions of this study, future research 
should involve a more extensive sample pool. The current 

study is confined to the use of DTI for identifying structural 
brain alterations, excluding functional dynamics. Future 
research will incorporate functional neuroimaging techniques, 
such as functional MRI (fMRI), to discern functional brain 
changes in patients with SMC and AD in contrast to healthy 
individuals. 
 Prior research has also suggested that the effectiveness 
of DTI measures, network diagnostics, and controllability 
parameters could be influenced by different acquisition 
parameters and pre-processing steps, which will further be 
investigated and discussed in future studies (17). A notable 
limitation of this study pertains to the selection criteria of AD 
patients. The stages of AD progression were not accounted 
for, potentially affecting the identification of early-stage AD. 
To address this, future research will aim to narrow the patient 
selection to those in the preliminary stages of the disease, 
thereby mitigating this issue. Additionally, the present study 
is of an observational nature, which means we can only 
discern the significant differences between the healthy 
controls, the SMC group, and the AD group. However, we 
have not employed any classifier to verify the accuracy of 
such distinctions. In future research, we plan to utilize various 

Figure 2: Brain Connectivity Network of healthy controls (HC), individuals with subjective memory complaint (SMC), and patients 
with Alzheimer's disease (AD). Each element within the matrix represents the number of streamlines connecting each two brain areas.

Figure 3: Total node degree comparison between HC, SMC, 
and AD. Student t-test was used to compare the total (global) node 
degree between different groups. The error bars represent standard 
deviation. The "ns" represents not significant.
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machine learning algorithms to categorize these distinct 
groups.
 In conclusion, this study verifies the feasibility of using 
brain controllability metrics as potential biomarkers in 
identifying neural control deficits linked to AD and SMC. 
Despite limitations, the study validates the potential of our 
findings in early detection of AD for future clinical application. 
Therefore, this research lays a foundation for subsequent 
studies aimed at fine-tuning and further validating these initial 
results.

MATERIALS AND METHODS
Preprocessing of DTI Data
 DTI data were pre-processed and reconstructed utilizing 
the DSI Studio software package (available at http://dsi-studio.
labsolver.org/). We first utilized the q-space diffeomorphic 
reconstruction (QSDR) technique to reconstruct the DTI data. 
The QSDR algorithm (18) is a model-less reconstruction 
approach that applies spatial normalization to diffusion 
data. QSDR transforms the distribution of diffusion spins to 
a template space based on a given deformation field, and 
the transformed distribution can be used to calculate the 
spin distribution function, which quantifies the number of 
spins that diffuses at any orientation. We then calculated 
the quantitative anisotropy (QA) values and warp scans 
to a template QA volume in MNI space via SPM nonlinear 
registration. Data acquisition included 41 diffusion sampling 
directions and a b-value of 1000 s/mm². In-plane resolution 
was 1.3672 mm and slice thickness was 2.7 mm. We verified 
b-table orientation through a comparative analysis and used 
a diffusion sampling length ratio of 1.25. For fiber tracking, 
a deterministic algorithm with augmented strategies was 
used. The angular threshold varied from 15 to 90 degrees, 
and the step size ranged from 0.5 to 1.5 voxels. Tracks 
between 30 mm and 200 mm were analyzed. We then 
generated 1 million tracts and used the parcellation scheme 
of FreeSurferDKT_Cortical atlas for brain segmentation and 
network construction (19). This study utilized the FreeSurfer 
Desikan-Killiany-Tourville Cortical atlas to delineate the brain 
into distinct regions of interest based on gyral morphology, 
encompassing 35 cortical areas (19). We then constructed 
the brain connectivity network by quantifying the number of 

fiber tracts connecting each pair of brain regions from the DTI 
data. Connectivity matrices were created by counting track 
connections between regions, followed by graph theoretical 
analysis for node degree calculation (20). All analyses 
mentioned above were done in the DSI Studio toolbox. 

Brain Controllability Analysis
 A crucial step in applying network control theory to the 
human brain involves establishing a model for the dynamics 
of neural processes. In this study, we used a simplified, noise-
free, linear, and time-invariant model to construct the dynamic 
model of the brain network (9). The model equation can be 
formulated as follows:

where x describes the state of brain regions over time, and A 
is the structural connectivity matrix constructed by the fiber 
tracking method on DTI data. The input matrix B specifies the 
control nodes and the input u denotes the external stimulation. 
 Controllability was then used to assess the ability of 
various brain regions to steer the network system into states 
of varying ease (9). It was calculated as the H2-norm of the 
network system. Mathematically, it was defined as:

 From a cognitive perspective, brain areas with high 
controllability are crucial because they enable the brain to 
transition efficiently between different cognitive states that 
require minimal cognitive effort (9).

Statistical Analysis
 The node degree and brain controllability were averaged 
across the brain regions to obtain the global node degree and 
brain controllability for each subject. The student’s t-test was 
then utilized to statistically compare the global node degree 
and global controllability, respectively, between HC, SMC, 
and AD groups. An alpha of 0.05 was defined as a statistically 
significant difference. False discovery rate method was used 
to correct the p-value after multiple comparisons.  
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