
28 JUNE 2024  |  VOL 7  |  1Journal of Emerging Investigators  •  www.emerginginvestigators.org

Article

in timely intervention (6). If caught early, skin cancer can 
often be treated with minimal surgical intervention and a high 
likelihood of a full recovery (3, 7). 

Current methods for detecting and classifying skin 
cancer, such as visual inspection by a dermatologist, can be 
time-consuming and costly (1, 2, 8). Access to healthcare 
professionals for skin cancer detection and treatment may 
be limited, particularly in developing countries (1). Also, the 
rate of correct diagnosis by expert dermatologists using 
images is estimated at 75-84% (9, 10). A lack of knowledge 
and awareness, misdiagnosis, fear, stigma, or inconvenience 
can all act as limitations that prevent a patient from seeking 
medical care (1).

Interest in deep neural networks in recent years has resurged 
due to several factors. These include the rise in availability of 
large, high quality, labeled datasets; advancements in parallel 
computing capabilities; and the development of accessible 
software platforms, such as PyTorch and Tensorflow, that 
facilitate GPU-based computations (11). As a result of these 
advances, deep learning techniques have found significant 
applications in the realm of computer-aided diagnosis in 
healthcare (12). These include analyses of medical images 
to determine whether they indicate the presence or absence 
of a pre-defined disease (13). Applications of this technique 
can be seen across various medical disciplines, including 
dermatology for skin disease identification, ophthalmology 
for recognizing conditions like diabetic retinopathy and 
glaucoma, and oncology for classifying pathological images 
for cancers, such as breast and brain cancer (12).

Dermatologists detect skin cancer beginning with an 
initial clinical screening, which might be followed up by a 
biopsy and histopathological examination. However, the 
time of a dermatologist is limited and expensive (13). In an 
effort to save time, cost, and effort, researchers have used 
machine learning algorithms, such as support vector machine 
or random forest, to detect melanoma from images of the 
skin to rule out healthy cases in an automated manner (14). 
Further advances in deep learning for classification of skin 
cancer images can assist the dermatologists by improving 
the diagnosis. Transfer learning techniques can reduce 
training time and improve performance and accuracy (15-
17). Specifically in medical images and the domain of skin 
cancer, researchers have experimented with several different 
types of model architectures. Artificial neural networks 
(ANN), convolutional neural networks (CNN), and generative 
adversarial neural networks (GAN) have been successfully 
used to automate and improve the accuracy of skin cancer 
classification (18). We leverage the advances in CNN literature 
in the context of the International Skin Imaging Collaboration 
(ISIC) dataset, to find the best performing model and deploy 
it on the cloud so that it can be accessed by anyone with an 
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SUMMARY
Skin cancer is a common and potentially deadly form 
of cancer. According to the Skin Cancer Foundation, 
1 in 5 Americans will develop skin cancer by the age 
of 70. If caught early, it can often be treated with 
minimal surgical intervention and a high likelihood 
of full recovery. However, diagnosis using current 
methods requires a physician, is time-consuming, 
and is expensive. This study’s purpose was to 
develop an automated approach for early detection 
for skin cancer. We hypothesized that convolutional 
neural network-based models using transfer learning 
could accurately differentiate between benign and 
malignant moles using natural images of human skin. 
To test this hypothesis, we developed a skin cancer 
detection system using four types of deep learning 
model architectures MobileNetV2, ResNet50V2, 
EfficientNetV2B0, and VGG16. We tested our models 
with a publicly available dataset from International 
Skin Imaging Collaboration. Through training, 
evaluation, and hyper-parameter tuning across four 
different models, the best-performing model, VGG16, 
achieved an Area Under the Curve (AUC) score of 0.95 
and a test accuracy of 84.7%. We deployed the model 
as a publicly available service using Representational 
State Transfer Application Programming Interface 
(REST API). Skin images can be submitted to the API 
endpoint for skin cancer prediction. Our findings 
suggest that deep learning models can play a 
vital role in accessible and automated skin cancer 
screening, empowering healthcare professionals to 
make informed decisions and potentially improving 
outcomes for patients with limited access to 
healthcare resources.

INTRODUCTION
Skin cancer is one of the most common and potentially 

most deadly forms of cancer (1-3). According to the Skin 
Cancer Foundation, 1 in 5 Americans will develop skin cancer 
by the age of 70 (1). According to the estimates provided by 
the American Cancer Society for the year 2023, the incidence 
of new melanoma skin cancer cases is expected to be 
approximately 97,700, with higher numbers in men compared 
to women (4). Early detection of melanoma is crucial for 
effective treatment and improved prognosis (5). Therefore, 
identifying the warning signs of skin cancer, such as changes 
in size, shape, or color of moles or skin lesions, as well as 
the appearance of new growths on the skin, plays a vital role 
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internet connection.
Specifically, four pre-trained models architectures 

-MobileNetV2 (19), ResNet50V2 (20), EfficientNetV2B0 (21), 
and VGG16 (22) were used for developing and testing skin 
cancer prediction performance. Our experiments resulted in 
VGG16 having the best model performance. Evaluation and 
comparison of the performance of different models are done 
using metrics such as precision, recall, Receiver Operating 
Characteristic (ROC) curves, confusion matrix, and accuracy. 
Our model that used the VGG16 pre-trained architecture 
achieved a test accuracy of 84.7%, with a recall of 0.94 and 
an Area Under the Curve (AUC) of 0.95.

We have deployed the model in the AWS cloud as a REST 
API, so that it is available over the internet to anyone who 
wants to use it for making predictions on natural images of the 
human skin containing moles.
 
RESULTS

We aimed to achieve high accuracy in skin cancer 
prediction through the experiments. We hypothesized that 
CNN-based models using transfer learning could accurately 
differentiate between benign and malignant moles using 
natural images of human skin. To test this hypothesis, we 
employed transfer learning, which leverages the knowledge 
learned from pre-trained models to expedite the training 
process and improve overall performance. 

We briefly describe the neural network architecture used 
in the experiments of this study. MobileNetV2 consists of 53 
layers and has approximately 3.4 million parameters (19) and 
is an excellent choice for resource-constrained environments 
like mobile devices or edge devices. ResNet50V2 on the 
other hand has 50 layers and approximately 25.6 million 
parameters (20). It is a very popular model in the computer 

vision literature and has demonstrated excellent performance 
on several types of image classification applications. 
EfficientNetV2B0 has 153 layers and approximately 5.3 
million parameters (21), which is designed to achieve high 
accuracy while being computationally efficient. VGG16 on the 
other hand has only 16 layers. However, it has approximately 
138 million parameters (22), which is very high compared to 
the other models such as MobileNetV2, ResNet50V2 and 
EfficientNetV2B0. It is known for its effectiveness in image 
classification tasks. It is widely used as a baseline model in 
computer vision applications.

The dataset used for experiments across all four model 
architectures was kept fixed in order to have a fair comparison 
of their performance. The dataset was downloaded from a 
publicly available dataset of images of skin lesions from ISIC 
(23) and split into disjoint train, validation and test subsets. 
For each model, 2637 images were used for training and 
660 images were used for validating the performance of the 
model. The images contained both malignant and benign 
samples. The hyper-parameters of each model varied 
between 0.00001 and 0.001 for learning rate and 10 and 
100 for epochs. For MobileNetV2, the accuracy of the model 
on the validation dataset varied between 78.93 and 83.30 
peaking at a learning rate of 0.005 after 20 epochs (Figure 
1). ResNet50V2’s accuracy spanned between 54.65 and 
81.59 reaching the highest value at a learning rate of 0.0001 
over 50 epochs (Figure 1). EfficientNetV2B0 saw a range of 
71.54 and 84.44 in accuracy, with the best performance at 
a learning rate of 0.001 and 30 epochs (Figure 1). Lastly, in 
the case of VGG16, accuracy varied between 76.28 and 86.9 
(Figure 1), with optimal results at a learning rate of 0.005 and 
40 epochs.

The best model from each of the four pre-trained 

Figure 1: Hyper-parameter tuning results for four model architectures. (a) MobileNetV2 (b) ResNet50V2 (c) EfficientNetV2B0 and (d) 
VGG16 on validation data. X-axis represents the hyper-parameter epochs. y-axis represents the performance of the model. Different learning 
rates are represented by varying colors along with their legends in the graph. The red arrow indicates the best validation accuracy (86.907%).
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architectures was selected based on its validation accuracy 
and used to evaluate its performance on the test data (Table 
1). The confusion matrix along with the ROC curves are 
reported for each model on the test data (Figure 2, Figure 
3). The threshold values used for calculating the confusion 
matrix is equal to 0.5 since it is a binary classifier.

A VGG16 model predicted skin cancer with the highest 
test accuracy. The VGG16 model was trained with a learning 
rate of 0.005 and 40 epochs. (test accuracy: 84.7%, AUC: 
0.9497) (Table 1). As can be seen from the confusion matrix, 
in addition to having the best performance VGG16 has a 
better precision in detecting the malignant images, which 
is a desired characteristic in medical applications. Error in 
detecting a malignant image is a worse outcome compared 
to error in detecting a benign image since a mis-prediction of 
a benign image can be corrected when a physician examines 
the image down the pipeline. However, if a malignant image is 

missed and hence not examined further by a physician, it can 
lead to a bad outcome for the patient. 

Low learning rates, like 0.00001, led to poor performance 
in all neural network architectures, likely due to inadequate 
parameter adjustments. Higher learning rates yielded better 
results across various epoch values. Increasing epochs on 
the other hand did not enhance performance, showing that 
the models reached the local optimum and iterating more 
over the data does not lead to any further improvement in 
model performance.

To make our model accessible to a broader audience, 
we integrated it into a publicly available service utilizing a 
Representational State Transfer Application Programming 
Interface (REST API) on Amazon Web Services. We stored 
the tensorflow model in the h5 format in the simple storage 
service. We used AWS lambda to store the code for inference 
and the API Gateway to create the REST API interface. This 
API-based service enables users to interact with the model 
programmatically and submit skin lesion images for prediction. 
One can submit the skin images to the API endpoint, and the 
model returns the corresponding prediction results. The url 
of the endpoint is: https://askai.aiclub.world/c2810e82-bfb5-
4157-876f-1a5fa4805e83.

An image can be provided to this endpoint in its base64 
encoded form. The response is a json with the key values 
status code, body and headers. Body of the response has 
a key called predicted_label, which contains the model 
prediction.

DISCUSSION
This study aimed to create an automated skin cancer 

detection system using convolutional neural networks and 
transfer learning. The hypothesis centered on the ability of 
these models to distinguish between benign and malignant 
skin lesions effectively. Previous attempts at automating the 
process of screening based on images of skin have utilized 
euclidean and fractal geometric perspective to train a fuzzy 
inference engine (24). Researchers have also looked into 

Figure 2. Confusion matrix for four model architectures. (a) 
MobileNetV2 (b) ResNet50V2 (c) EfficientNetV2B0 and (d) VGG16 
on test data composed of 360 images of benign moles and 300 
images of malignant moles. Confusion matrix was calculated for a 
threshold value of 0.5.

Figure 3. ROC curve for four model architectures. (a) 
MobileNetV2 (b) ResNet50V2 (c) EfficientNetV2B0 and (d) VGG16 
on test data composed of 360 images of benign moles and 300 
images of malignant moles. The AUC value for the VGG16 model is 
red as it is the highest (0.9497).

Table 1: Test results from the models chosen from each of the 
four pre-trained architectures. Best model was chosen based on 
validation accuracy and was used for making predictions on the test 
dataset to generate the results in the table. The last column is green 
as it corresponds to the model with highest accuracy. Precision 
refers to the ratio of true positive to all positive predictions, where 
positive in this case is the occurrence of cancer. Recall is the ratio of 
true positives to all actual positives. F1-core is the harmonic mean of 
precision and recall, balancing the trade-off between them. AUC is 
the area under the curve for the ROC and measures the ability of the 
model to distinguish between classes. 
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image enhancement techniques that would assist in detecting 
skin cancer (25). However, these techniques use a different 
dataset and do not report any quantitative metrics of model 
evaluation on its ability to correctly identify cancerous 
lesions.  Four deep learning architectures MobileNetV2 (19), 
ResNet50V2 (20), EfficientNetV2B0 (21), and VGG16 (22) 
were employed and tested against the ISIC dataset (23). The 
comprehensive process of training, evaluating and fine-tuning 
these modes led to the VGG16 emerging as the architecture 
with the best predictive performance, achieving an AUC score 
of 0.95 and a test accuracy of 84.7%.

The hyper-parameters settings of the VGG16 model that 
led to the best test performance were a learning rate of 0.005 
and 40 epochs. In contrast, the diagnosis provided by a 
dermatologist has an accuracy of 75-84% (9, 10). Even though 
this model performs marginally better than human diagnosis, 
it should be used only as an assistive tool to a dermatologist 
to help speed up the process of analysis and diagnosis. 

We observed that a low value of learning rate such as 
0.00001 yielded the worst performance across all the neural 
network architectures. This suggests that such a low value 
of learning rate caused the models to make insufficient 
adjustments of the corresponding model’s parameters, limiting 
its ability to learn from the data effectively and resulting in 
suboptimal performance. A higher learning rate performed 

much better for all values of epochs. We also observed that 
changing the epoch values to higher numbers did not improve 
the model’s performance. This suggests that the model 
found the local minima and could not further enhance the 
algorithm's performance. A low value of epochs was enough 
for the models to achieve a local optimal solution.

The performance of deep neural networks is often 
influenced by the size of the dataset used for training. In 
this study, a larger dataset with more examples of malignant 
skin lesion images could potentially enhance the model's 
accuracy and generalization. Additionally, the research was 
constrained to four specific models, but further investigation 
into alternative algorithms could yield valuable insights and 
potentially even better results. Expanding the dataset size and 
exploring additional algorithms are crucial factors to consider 
when interpreting and improving the outcomes of this study.

Another possibility for future research is inclusion of early-
stage cancer images into the dataset that would enable early 
skin cancer detection. One can also deploy this model on 
mobile applications which would enable convenient screening 
and access to remote areas which may lack medical facilities. 
It could be used as a preliminary screening tool, rapidly 
sifting through large volumes of cases and flagging those 
of concern. In this context, the balance between precision 
and recall becomes extremely important. On one hand, a 
higher recall might lead to more false positives, which could 
cause undue stress and further medical tests for patients. 
On the other hand, higher precision could increase the risk 
of false negatives, potentially missing genuine cases. In 
medical diagnosis, perhaps leaning towards slightly higher 
recall is judicious, as it ensures fewer missed diagnosis. This 
would mean a few false alarms, which could be removed by 
subsequent medical review by the professional. However, a 
medical professional should always be involved to determine 
the final outcome.

MATERIALS AND METHODS
Dataset

The dataset was downloaded from a publicly available 
dataset of images of skin lesions from ISIC (23) (Figure 4). 
The dataset had a total of 3297 images (1800 images were 
benign and 1497 were malignant). 

The data was split so that 80% of the dataset became the 
training set and 20% of the dataset became the test set. Out 
of the training dataset, 80% of the data was used for training 
the model and 20% was used for validation. 

Algorithms
Four available pre-trained models (MobileNetV2, 

ResNet50V2, EfficientNetV2B0, and VGG16) were selected 
from the TensorFlow Keras library by looking at their sizes, 
parameters, and accuracy (19-22). We focused on evaluating 
a spectrum of model architectures that encompassed both 
compact and extensive network sizes. This included the 
lightweight MobileNetV2 model, which has a small footprint 
of just 14 MB, as well as significantly larger models, with 
the largest being 528 MB. Additionally, we selected two 
intermediate-sized models—EfficientNetV2B0 at 29 MB 
and ResNet50V2 at 98 MB—to provide a comprehensive 
size range analysis. The chosen models were all within 
an accuracy bracket of 71.3% to 78.7% as reported on the 
ImageNet challenge, ensuring a balanced comparison of 

Figure 5. Project flowchart. The experimental procedure included 
training, evaluating, comparing the performance of the models with 
hyper-parameter tuning, and model inference. The dataset was 
divided into train, validation and test sets. The training and validation 
set were used to train different models and evaluate the best model 
and hyper-parameter set. After the best model was chosen, it was 
evaluated on the test set to report the final results.

Figure 4. Sample images in the dataset. Top row: images of 
benign moles. Bottom row: images of malignant moles. Each picture 
is from a different individual.
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efficiency and performance for selection of pre-trained 
networks. This diversity of characteristics ensures a 
comprehensive evaluation of the models capabilities in the 
context of skin cancer detection, allowing us to cover a broad 
spectrum of deep learning architectures.

The architecture of each pre-trained model was customized 
by adding a single dense layer with 100 neurons. The goal 
of the training phase of the experiment is to come up with a 
model that has the optimal predictive performance. In order 
to accomplish this, several experiments were conducted with 
different hyper-parameter values.

To identify the optimal values of hyper-parameters, 
typically an iterative process of experimentation and analysis 
is conducted. The process involves training the neural network 
with different combinations of learning rates and epochs and 
evaluating the model’s performance on a validation dataset.

During the training process, the hyper-parameter learning 
rate was varied between the values - 0.00001, 0.0005, 
0.0001, 0.005, 0.001) and epochs were varied between the 
values -10, 20, 30, 40, 50, 100. The results of training were 
evaluated on the validation set. This process is repeated on 
several pre-trained models for all combinations of learning 
rates and epochs. Once the best model is selected, model 
performance on the test set is evaluated. (Figure 5)

Evaluation of the model was done by using metrics such as 
accuracy, precision and recall to measure the model's ability 
to correctly classify images of skin lesions. A ROC-AUC 
analysis was also performed on the test dataset. Accuracy 
is calculated by dividing the number of predictions that are 
correct by the total predictions. It tells us the percentage of 
the correct classifications that the model makes. Precision 
is calculated by dividing the true positives by the sum of 
true positives and false positives. The precision tells us, out 
of all the times the model predicted positive, the percent of 
positive predictions that were correct. Recall is calculated by 
dividing the true positives by the sum of true positives and 
false negatives. The recall tells us, out of all the data that 
is positive, the percent that the model predicted correctly as 
positive. 

Software
A standard desktop or laptop computer with internet was 

used to access the google colab account, where tensor flow 
packages were used for conducting experiments. Keras 
pre-trained deep learning models were used to download 
the model architectures along with their imagenet weights. 
Standard python packages such as matplotlib and numpy 
were used to create the figures. AWS Lambda and AI Gateway 
were used to create a REST API deployment.
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