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Article

nearly 70% is frozen in glaciers and polar ice caps. Less than 
0.01% of all water worldwide is directly available for human 
consumption and resides in lakes, rivers, and reservoirs (1).

Surface water is above the ground and participates in 
water cycle movement to and from the Earth’s surface. Water 
that seeps into the ground is called groundwater. Groundwater 
and surface water are constantly interacting with each other 
as the weather changes over the year from summer to winter. 
Groundwater resources provide a buffer against depletion of 
freshwater resources due to climate variability. Groundwater 
is essential to the survival of 49% of the global population, 
who solely depend on it to meet their basic daily needs (2).  
Groundwater is also a critical resource to produce food and 
accounts for around 25% of all water withdrawn for irrigation, 
serving 38% of the world’s irrigated land (3). The rate of global 
aggregated groundwater storage depletion is considerable 
and more prominent in areas with explosive population 
and economic growth like China and India, increasing from 
158km3/year in 1950 to 959 km3/year in 2017 (4).

Access to water and sanitation is a fundamental human 
right recognized by United Nations. However, according 
to the World Bank, water scarcity affects 40% of the global 
population (5). According to the research done by the World 
Bank, because of world population growth, there will be a 40% 
shortfall between demand and available supply of water by 
2030, which will require a 15% increase in water withdrawals 
from our scarce ground water resources (6).

A geological study showed that the Houston area has 
experienced one of the fastest rates of subsidence, a gradual 
sinking of the land. The study showed that subsidence was 
linked to excessive groundwater usage (7). Similar research 
in China links groundwater depletion to land subsidence (8). 

Aquifers are a body of permeable rocks which can store 
and transmit groundwater. Groundwater is a term which 
is used to describe the water which has infiltrated the soil 
and collected in the rocks below the surface. Groundwater 
additions and subtractions are best explained by The 
University of New Hampshire’s (UNH) Water Balance Model, 
which simulates the global water cycle and includes the 
water extraction for human consumption (9). The model 
shows the major fluxes and storage by overlaying the water 
demands (subtractions) attributed to irrigation, domestic, 
industrial and livestock needs, with the water inflows from 
reservoirs via glaciers (additions). It also factors recharging 
the groundwater aquifers, while understanding the impact 
of precipitation (addition), evapotranspiration (subtraction) 
on the overall groundwater balance and flow. The UNH’s 
water balance model can be used to create a specific map 
of an aquifer by interlinking the flows attributed to surface 
runoff and base-flow to fluid river water and by factoring in 
man-made dams and reservoirs. Based on the historical 
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SUMMARY
Groundwater resources are highly dependent upon 
recharge from precipitation; hence, variability in 
precipitation patterns is important for sustainable 
groundwater management. Climate change is not only 
increasing the frequency and intensity of extreme 
hydro-meteorological events like hurricanes and 
cyclones, but is also having an even more complex 
impact on other variables such as precipitation, 
which can be measured by the Palmer Modified 
Drought Index (PMDI). Therefore, it is imperative to 
understand how climate change impacts groundwater 
management. This research has created a preliminary 
model to predict the future groundwater levels based 
on the critical causality and regression analysis using 
artificial intelligence. In this study, we hypothesized 
that tree-based automated artificial intelligence 
models, would perform best in predicting future 
groundwater levels. Unlike other machine learning 
models, tree-based models can accommodate 
correlated datasets like climate variables and 
changing demographics. We acquired water aquifer 
data from the United States Geological Survey (USGS) 
for Texas aquifers, climate data from the National 
Oceanic and Atmospheric Administration (NOAA), and 
population data from the US census to train artificial 
intelligence models using MATLAB. This research 
project identified key trends that groundwater levels 
were down 50% on a normalized basis for the selected 
dataset and established correlation of groundwater 
changes, weather related changes (temperature 
changes, precipitation changes and drought indices) 
and demographic changes. Understanding these key 
trends allowed us to select the right predictors for the 
AI model. Tree-based AI models predicted the future 
groundwater levels with the most accuracy and least 
root mean square error (RMSE) as compared to other 
AI models like linear regression, neural network, 
support vector machines.

INTRODUCTION
Scarcity of freshwater is an increasingly critical public 

health problem in many parts of the world. Inadequate 
access to safe freshwater contributes to waterborne disease, 
malnutrition, poverty, economic and political instability, 
and conflict between countries or groups within countries. 
Approximately 97.5% of all water is either salt water or polluted 
water unsafe for human consumption. Of the remaining 2.5%, 
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research conducted, groundwater recharge (additions) and 
discharge (subtractions) are impacted by environmental 
(e.g., precipitation, ambient temperature), geographical (e.g., 
density of streams,  sub surface geology, depth to water path 
(e.g., surface infiltration, surface runoff, spillover to ocean), 
and human variables (e.g.,  population, intensity of land use) 
(10).

As climate change drives increasing variability in 
precipitation patterns, it is imperative to understand how 
groundwater resources get impacted due to delay in the 
recharge from precipitation and extended draught conditions 
(11). The depth of water aquifers indicates the level at which 
groundwater is available from the surface. As our consumption 
of groundwater continues to increase with population, we 
have depleted our water resources and need to dig deeper to 
find scarce water resources (12). Impacts of changing climate 
on variables like precipitation, Palmer Hydrological Drought 
Index (PHDI), and temperature of groundwater is even more 
complex and difficult to establish in a static model. Climate 
change and groundwater research has been conducted to 
identify the impacts of climate change on specific aquifers, but 
the use of artificial intelligence (AI) to create prediction models 
is still in its infancy (13). In many AI models, researchers 
studied water resources management using neural networks, 
but in some cases machine learning models were used to 
create water variables. The initial models’ accuracy was then 
improved by applying complex optimization algorithms. The 
reasons may be that sufficient historical data are required 
to analyze the characteristics of climate change. Moreover, 
sometimes the most important parameters like PHDI are not 
readily available in a standardized format, across geographies 
and long timespan, to be consumed in the data intensive 
AI models. To date, the driving forces that cause extreme 
hydro-meteorological events and gradual changes due to 
demographics have not been combined in one model (14).

It is necessary to assess the impact of future climate 
changes coupled with different groundwater abstraction 
resulting from human activities and water diversion scenarios 
(15) (16). Key limitations of existing research are that it is 
in silos (of geology or weather-related or demographics) 
and current prediction models do not factor all variables in 
an interdependent causation; additionally, the models are 
not scalable across areas of study. These models required 
complex numerical modeling by understanding the impact of 
geology on porous media and is heavily dependent on the 
unique understanding of the data related to local topography. 
However, AI algorithms have advanced dramatically, 
allowing us to create models linking complex interdependent 
variables by processing enormous non-structured and 
multidimensional data and applying optimization techniques 
to create a new understanding of the complex interlinkages 
(17). We need to research the water levels across the 
aquifers to best understand the critical parameters other than 
precipitation which impact groundwater levels; identifying key 
parameters will allow us to develop a model to predict the 
future groundwater levels.

The first step of our study was to identify and select key 
parameters that impact groundwater level.  We collected, 
cleansed and normalized data collected from United States 
Geological Survey (USGS), National Oceanic Atmospheric 
Administration (NOAA) and US Census to select the right 
predictors for groundwater depth.  After the right parameters 

were selected, the AI model based on the selected dataset 
helped us establish the linkage between demographics and 
climate variables to understand the long-term impact on 
groundwater. This study allows us to predict the impact of 
future climate changes on groundwater resources and make 
our groundwater resources more resilient by identifying the 
right water infrastructure.

In this study, we hypothesized that a tree-based automated 
AI model would outperform all other machine learning models 
we tested and reveal the impact of climate and demographic 
variables to groundwater depth. This was because the 
climate variables are interdependent on each other, and 
demographics are impacting the climate directly. We also 
conducted detailed literature review of the comparative study 
of artificial intelligence models and statistical methods for 
groundwater level prediction (18). Our research revealed 
that the relevant AI models for groundwater prediction can 
be categorized into neural networks, regression, scaler 
vector machines, and gaussian process regression. We 
observed the key parameters and process for defining the 
model comparison parameters, by inputting the timeseries 
dataset and using statistical methods to identify input and 
output parameters. We were also able to understand the best 
practices in terms of defining training and testing data and 
compare various models like multiple linear regression, neural 
networks and extreme learning machines, by understanding 
the key statistical indices like root mean square error (RMSE). 

Our next step was to analyze data to select prediction model 
parameters which were fed in a regression learner application 
of MATLAB to create initial models. We trained different 
model types in MATLAB with a subset of data and were able 
to confirm that fine tree model has the least RMSE of all the 
selected models. Our findings also correctly established the 
direct correlation with population, temperature, and inverse 
correction with temperature and Palmer hydrological drought 
index (PHDI). 

RESULTS
To test our hypothesis, we collected Texas state data 

from aquifer database from USGS, climate database from 
NOAA and population data from US Census, normalized it for 
ingestion in MATLAB to create a model and then tested the 
model in regression learner to test our hypothesis (Figure 1). 
We were able to normalize and harmonize the data and 
assign the appropriate climate and demographic data to 
the respective aquifer. Our analysis allowed us to identify 
key trends and correlations amongst the predictors and 
groundwater depth. We then imported the harmonized data 
into MATLAB in a matrix. Our detailed analysis in MATLAB 
visualization using graphs and causation analysis allowed us 
to finalize the predictors which had a high degree of causation. 
We were then able to import this matrix into Regression 
Learner module of MATLAB to test our hypothesis by testing 
a subset of the dataset with the trained model. We were able 
to reduce the error in predictions by refining different models 
by iterating on the predictors and adjusted the parameters. 

Based on the USGS dataset that was selected for 
Texas aquifers, groundwater-depth continues to increase, 
highlighting the depleting groundwater resources. Normalized 
groundwater-depth from has increased from 104 feet in 1940 
to 181 feet in 2022, on a normalized basis (Figure 2A). The 
raw data plotted in MATLAB which shows the USGS data 
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of the 171 Aquifers and how raw groundwater depth has 
also continued to increase by 74% over the last 80 years 
(Figure 2B). The trends by month and year of groundwater-
depth also show similar trend whereby the groundwater 
depth is continuously increasing across the months over 
the last 80 years (Figure 2C). Average groundwater-depth 
(actual reading) is a close approximation of the trend related 
to the average normalized groundwater-depth, based on the 
analysis done in excel.

We used linear-regression model to determine correlations 
between different aspects of demographic data and climate 
data, including temperature, precipitation, and Palmer 

Hydrological Drought Index (PHDI) (Figure 3). Temperature 
for the State of Texas did not show significant variation by 
month (Figure 3A). Based on the precipitation data, the trend 
indicated that the precipitation average had increased by 
0.42 inches from 2000 onwards, as compared to the same 
timeframe prior, with unusual spikes driven by destructive 
hurricanes like Harvey (Figure 3B). The PHDI and PMDI had 
statistically significant material differences in the last 30 years 
as the drought like conditions have increased in the recent 
years (Figure 3C and Figure 3G). Temperature anomaly 
showed an increasing trend in the last 20 years (Figure 3D). 
Precipitation anomaly increased over the observation period 

Figure 2: Ground water depth from 1940 to 2022. A) normalized in Excel; B) raw data in MATLAB; C) normalized by month and year in 
excel.

Figure 1: Research methodology. Step by step guide to creating groundwater prediction model. 1. collect data; 2.data cleansing; 3.create 
model 4.refine model 5. predict groundwater values.
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(Figure 3E). PHDI anomaly and PMDI anomaly show 
increasingly positive values with more positive values then 
negative values in recent years (Figure 3F and Figure 3H). 
Population data population of Texas shows an exponential 
increase from approx. 5 million in 1930s to approximately 
30 million in the last census (Figure 3I).

We harmonized the data and selected the key variables to 
create an array in MATLAB for the Texas aquifers to predict 
the “groundwater depth” in the future. Thirty percent of the 
data was selected as the training data for the models and 
then the actual results were plotted against the models. Over 
26 different model types were trained in MATLAB across 
linear regression, regression trees, support vector machines 
(SVM), gaussian process regression, kernel approximation, 
ensembles of trees and neural network methods. After 
multiple iterations, the fine tree regression model allowed 
us to predict the groundwater data with the least Root Mean 
Square Error (RMSE). The fine-tree model also has the best 
value of R-squared, which denotes how well the data fit the 
selected model.

After the fine tree mode was selected with the right 
parametrization selection, research results validated the 
dependencies of the demographic (population) and climate 
change (ambient temperature, precipitation, PHDI, PMDI, 
temperature anomaly, precipitation anomaly) data and 
established the correlation by analyzing partial dependence 
plots with respect to the predicted variable of “groundwater-
depth”, modeled as “DepthToWaterBelowLandSurfaceInFT” 
in MATLAB. Any increase in the groundwater depth below 
land surface denotes that the groundwater resources had 
depleted. It was also important to understand the linkage of 

anomaly variables as they predict the correlation with extreme 
hydrological events and allow us to do various scenario 
modeling in the future.

Partial dependence plots (PDPs) in MATLAB establish 
causation and visualize the marginal effect of each predictor 
on the predicted response of a trained regression model. 
We trained the fine tree model and realized that population, 
temperature, and precipitation anomaly have a direct 
correlation with increasing groundwater depth, while PHDI 
index have inverse correlations with groundwater depth 
(Figure 4).

There is a direct correlation of population with the 
groundwater depth. According to the PDP the impact of the 
population is the most significant, accounting for most of the 
groundwater depth increase (Figure 4A). This is consistent 
with other studies which correlate an exponential increase 
in population in China and India with the most depletion 
of groundwater resources (19) (20). Population is also a 
surrogate indirectly correlated to the amount of vegetation 
and deforestation which leads to less area available to absorb 
the precipitation and therefore increasing the groundwater 
depth.

Higher ambient temperature is directly correlated to 
increasing groundwater depth (Figure 4B). Temperatures 
above 50 degrees Fahrenheit (1st Stair) and 63 degrees 
Fahrenheit (2nd Stair) average cause a steep jump and then 
it increases gradually after 70-degrees Fahrenheit. As the 
temperature goes even higher in the future because of climate 
change (not shown in the figure), based on PDP predictions, 
the impact of hypothetical 3rd (80-90 degrees Fahrenheit) 
and 4th step (100-110 degrees Fahrenheit) jumps will lead to 

Figure 3: Climate parameters (Temperature, Precipitation, PHDI) and climate anomalies and population by year and month (1850-
2022). A) Temperature, B) Precipitation, C) PHDI, D) Temperature anomaly, E) Precipitation anomaly, F) PMDI anomaly, G) PMDI, 3H PMDI 
anomaly, I) Population.
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significantly more impact to the groundwater depth.
Based on past studies, precipitation is assumed to be 

inversely correlated to groundwater depth, but according to 
the PDPs in our regression model, precipitation does not have 
an impact at all (Figure 4C). However, the precipitation value 
after 6 inches indicates a direct correlation with groundwater-
depth. It can only be explained by a combination of other 
factors like run-offs and the increase in population and loss of 
farmland. More datapoints need to be generated across the 
US to confirm this finding.

Palmer Hydrological Drought Index (PHDI) allows us 
to calculate when a drought will end based on precipitation 
needed by using a ratio of moisture received to moisture 
required to end a drought. This is one of the most common 
parameters which is used to assess the impact on 
groundwater resources on longer timescales. PHDI values 
less than -2 indicate a drought. PHDI below -2 (conditions 
of draught) has a direct correlation with groundwater depth 
(i.e., as the drought conditions worsen and go below -2, the 
groundwater depth goes down) at a consistent pace with a 
flattening (reduced rate) after PHDI reaches -6 (Figure 4D).

Temporal climate variability (denoted by the variables 
temperature anomaly and precipitation anomaly), especially 
variability in precipitation, can have substantial effects on 
recharge and groundwater levels. The increased variability in 
precipitation and temperature that is predicted under many 
climate-change scenarios will likely have variable effects on 
different aquifers and different locations within an aquifer 
depending on spatial variability in hydraulic properties and 
distance from the recharge areas. According to the National 
Oceanic and Atmospheric Administration’s (NOAA) national 
weather service, temperature or precipitation anomaly means 

a departure from a reference value or long-term average, 
often over the thirty-year period for that region. A positive 
anomaly indicates that the observed temperature was warmer 
than the reference value, while a negative anomaly indicates 
that the observed temperature was cooler than the reference 
value. According to the regression model, the groundwater 
variation was not directly correlated to temperature anomalies 
in the trained regression model (Figure 4E). The depth 
ranged from 128 feet to 131 feet across the wide range of 
temperature. This indicates that wider swings in temperature 
do not materially change the ground water depth. This finding 
requires more research and a wider data set to validate the 
results.  Precipitation Anomaly between -1 and +2 have the 
most impact on the model leading to a steep jump (Figure 4F). 
More data needs to be included to understand if anomalies 
increasing significantly will generate new steps which will 
deplete the groundwater resources further.

In MATLAB the models are evaluated based on the 
RMSE (Root Mean Square Error), R-Squared (Coefficient of 
determination), MSE (Mean Square Error) and MAE (Mean 
Absolute Error) in addition to the elegance parameters like 
prediction speed, training time and model size. In addition, 
you can also evaluate models using residuals plots which 
show the comparison of the residuals based on the validation 
data set after training the model and are ideally symmetrically 
distributed around zero. All the models selected for comparison 
used cross-validation schema with 5 cross-validation folds, 
which splits the data into 5 distinct sets. The validation 
schema trains a model using the training-fold observations, 
which are not in the validation fold and then assesses the 
model performance using validation-fold data for training. 
10% of the data was set aside to test the created model. The 

Figure 4: Partial Dependent plots (PDP) correlation to the groundwater depth. A) Population; B) Temperature; C) Precipitation; D) PHDI; 
E) Temperature Anomaly; F) Precipitation Anomaly.  
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key features which were found to be relevant in the data set 
as per the MRMR algorithm in decreasing order of importance 
were precipitation, population, Palmer Hydrological Draught 
Index (PHDI), PHDI anomaly, Palmer Modified Draught 
Index (PMDI) anomaly, temperature, PMDI, and temperature 
anomaly from the selected parameters in the model. The 
model with the least RMSE and most R-square (0.99) was the 
fine tree model (Figure 5). The neural network model was the 
closest, but the ensemble and kernel models were found to be 
ten times worse (based on RMSE) compared to the fine tree 
model. The fine tree predictor model correctly established the 
direct correlation with population, temperature, and inverse 
correction with temperature and PHDI anomaly. 

DISCUSSION
A key aspect of this research was to develop an approach 

that uses the latest advancements in artificial intelligence 
whereby data creates the model versus creating a model 
based on the equations. Due to advancements in machine 
learning, we can leverage existing data sets and support 
adaptation by adding new variables and parameters and 
create a modular approach to simulate different scenarios. 
Here, we hypothesized that tree-based automated artificial 
intelligence models, would perform best in predicting future 
groundwater levels. 

Our prediction model used large amounts of data to 
predict groundwater levels based on actual measurements 
at aquifers by correlating different parameters. The large 
dataset allowed us to create a groundwater model which can 
be constantly improved as we gather more data, and we can 
increase the confidence of our prediction by expanding the 
geographical footprint beyond Texas. Typically, microstudies 
are conducted when severe drought like conditions persist 
for a longer time to predict the groundwater levels. However, 

microstudies use many resources and take years to complete 
after considering geological factors. The circular nature of 
geological parameters which impact the groundwater levels 
makes the studies obsolete very quickly. Also, different 
climate variables that should be embedded in the model are 
difficult to consider. The complexity of different predictors and 
inability to homogenize the data is another problem due to lack 
of standardization across the globe. There is a tremendous 
value in identifying unique parameters which are consistently 
identified as predictors in the numerous case studies done 
across the world to predict groundwater levels especially in 
countries which are grappling with water scarcity like China, 
India, and Iran (21).

One key limitation of the model developed from our study is 
that population of Texas was used as a surrogate for the Texas 
aquifers. Texas population concentration in metropolitan 
areas like Houston and Dallas will lead to a variation in 
population by county, which is currently not factored in the 
model. We can improve the model accuracy further by using 
the county population in which aquifer is located. For some 
years, population data was not available. So, the population 
was projected between the two census years when it was not 
available. For example, the population for years 1952 to 1959 
was projected based on the starting population in 1950 and 
the ending population in 1960. This smoothing using linear 
regression could have had an under or overestimation impact 
on the model depending on the variable rate of increase. In 
the current model, yearly population was assumed for all the 
months. Monthly increases and decreases of population will 
also have an impact on the model accuracy.

Another limitation of the prediction model was that different 
aquifers were monitored from groundwater-depth perspective 
on a different time horizons. For example, the number of 
readings increased from 15 in 1940 to 9803 in 2021. So, it was 

Figure 5: Best Root Mean Square Error (RMSE) (less is better) and R-square values (closer to 1 is better) of all the different models 
trained. Fine Tree model has the best fit with the least RMSE and best R-square values. 
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imperative for us to normalize the water depth to understand 
the trends and averages across the different aquifers, due to 
lack of complete data availability across the aquifers for all 
years. The normalized data allowed us to visualize the overall 
trend across the years and select the predictor variables. It is 
important to note that unique weather across all the Aquifers 
would have an impact on the localized water aquifers, which 
was not factored into the overall model. The key challenge 
with expanding this research is to factor in the parameters 
which impact the groundwater value other than the core 
attributes like hydraulic conductivity, basin type, infiltration 
rate, basin characterization model, and runoff estimation. 
Further investigation and more data are necessary to continue 
to refine the model.

In the future, we can use this model to develop a conceptual 
predictive model for groundwater aquifers across the world 
by adding more data and more variables which complete 
the model (like catchment, impact of floods, discharge data) 
and predict subsidence related to groundwater reduction or 
predict key metrics related to food sustenance which are 
dependent on aquifers for irrigation. There is also a need to 
expand the dataset and remove any biases or hallucinations 
in the dataset. This model can be expanded by including 
the following data sources in the future: International Water 
Management Institute (IWMI), IHE Delft Institute of Water 
Education, World Water Assessment Program (WWAP), and 
World Water Development Report II (WWDRII) database. 

Our fine-tree AI model, with the least RMSE, identified 
the correlation of the variables and allows us to predict the 
change in groundwater resources in the future. We can use 
this model as a tool to preserve our groundwater resources, 
by identifying vulnerabilities and conducting risk-assessment 
ahead of time. We can also conduct scenario modeling based 
on different weather and climate predictions, including the 
impact of future drought scenarios.

MATERIALS AND METHODS
Data Collection and Cleansing 

The first step in model creation was to collect different 
datasets and harmonize them into one matrix across the 
selected parameters (Figure 1). We retrieved groundwater 
dataset from USGS, which collects dataset monthly for all 
the US Aquifers including groundwater depth, aquifer type 
and geography details. The focus of our study was the state 
of Texas to understand the patterns. Finally, after cleansing 
and randomizing the aquifers across the state, 171 Texas 
Aquifers were included in the study leading to a 142773 
X 16 matrix of monthly data points from 1940 to 2022. 
Climate dataset was collected from NOAA, which included 
temperature, precipitation, PMDI, and PHDI data from 1895 
to 2022 for Texas. This resulted in a matrix of 1536 X 13. 
Population dataset from the US census was used as a 
surrogate to determine the human consumption correlation. 
The US Census data for the state of Texas from 1850 to 2022 
were gathered. This ultimately resulted in a 32 X 256 matrix 
after smoothing over the population changes over the census 
period when the data was not available. All this data resulted 
in a 142773 X 25 normalized matrix which had the data of the 
aquifers enriched by the climate parameters and population 
data for the year.

Analyze Data to Select Prediction Model Parameters 

Excel and MATLAB were used to conduct detailed data 
analysis to understand the key parameters which should be 
incorporated as part of the model. Historical data analysis 
was used followed by bias correction and removal of outliers 
and statistical analysis of data and identification of patterns 
to form analysis. Preliminary analysis was done in Excel. 
After normalizing the raw data, the matrix was imported into 
MATLAB. The three matrices were merged into MATLAB and 
the matrix that was used to train the model was 142733 X 25. 
Since aquifer data had different start dates for measurement, 
the depth was normalized by assuming the start of the 
reading as 100. The key values which were observed as 
having a trend were then analyzed in MATLAB to understand 
the detailed statistical parameters and identify the key trends.

MATLAB Regression Learner Creates a Model
We used regression learner to import data and then trained 

the dataset to predict future parameters of the dataset based 
on “predictors". For training, linear regression, regression 
trees, support vector machines, gaussian process regression 
models, kernel approximation regression models, ensembles 
of trees and neural networks were used. Regression learner 
was used to train different models and then we tested a 
portion of the data (30%), which is set aside at the beginning 
of the test. After selecting the model, we adjusted the features 
(predictors) iteratively to achieve a better result. 

Iterate across Different Prediction Models (Neural 
Networks, Trees, Regression, Support Vector Machines) 
and Select the one with the Least Root Mean Square 
Error (RMSE) 

We then trained different models and based on the least 
RMSE we selected the model which works best. Since 
the variables that were selected to model the groundwater 
prediction are correlated to each other, tree regression models 
were the most optimal as it allows us to predict continuous 
valued outputs instead of discrete outputs. Medium trees, 
narrow neural networks, boosted trees, bagged trees and 
fine-tree models were iteratively tested after optimizing the 
parameters and selecting the right number of predictors 
(Figure 6). Predictions using fine-tree AI models achieved the 
most symmetry against the predicted response (Figure 6E). 
Details of the model 7 which had the least RMSE of all the 
models were analyzed to understand the predictor’s accuracy 
(e.g. temperature, population) based on the selected fine-tree 
models with the test data set aside at the beginning of training 
the model (Figure 7). Also, the residuals plot of the model 7 
against various parameters which are symmetrical around 0, 
which is a sign of a good, trained model.

Export the Model as a Function in MATLAB 
After training the model, we exported the model as a 

function (GW_Vedant), which has all the coding related to the 
training inbuilt in the model (Figure 8). The details of training 
data used, and the exact model details are also exported in 
the function. After exporting the model to the workspace from 
Regression Learner, or run the code generated from the app, 
we were able to create a structure that can be used to make 
predictions using new data. The structure contains a model 
object and a function for prediction. This exported model 
allows us to make predictions by using new data as an input 
to predict the future groundwater depth.
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Figure 6: Prediction versus Actual Plots for different models (with RMSE): Perfect prediction is on the line and closest predictions 
are closest to the line. A) Medium Trees, B) Narrow Neural Network, C) Boosted Trees D) Bagged Trees, E) Fine Tree Model

Figure 7: Predictions mapped against the trained model. A) Record numbers against groundwater depth, B) Population prediction vs 
actual values against groundwater depth, C) Temperature prediction vs actuals against groundwater depth. Predicted values are shown in 
orange while Actual values are shown in blue dots. Errors are shown in red.
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Use Prediction Function to Predict the Groundwater 
Depth

We were able to test the AI model by predicting the 
aquifer’s depth for “City of Douglasville” by inputting the 
mandatory predictor parameters as input variables (Figure 8). 
“Neural Network” Timeseries in MATLAB was also used to 
predict future values based on past values. In addition, we 
were also able to create “What If” scenarios and get different 
groundwater depths depending on the simulations of predictor 
parameters like extreme heat and cold.
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