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Article

emit additional gluons, which can undergo further splitting, 
generating additional quarks, antiquarks, and gluons in 
a cascading manner. These particles and the associated 
energy are measurable through various detectors in particle 
physics experiments (3). 
 Many different properties of dimuon collisions are measured 
by the CERN data sets. The initial energy is a quantity that 
refers to the total energy of each respective muon before the 
collision of both muons. The group at CERN measured such 
using giga-electron volts (GeV) which is represented by E1 
and E2 in our dataset. Momentum in x-, y-, and z-directions 
are values that represent the 3D vector components of the 
muon’s momentum, defined by P = mv, where m is the mass 
and v is the velocity of the object. Transverse momentum is 
another quantity given in both datasets, described by CERN 
(European Council for Nuclear Research) as the “amount 
of a particle’s momentum perpendicular to the beam [jet] 
direction” (4). Invariant mass, also known as rest mass, is 
a term in particle physics that is directly proportional to a 
particle’s inertia when it is stationary. The inferred mass value 
remains unchanged regardless of the reference frame used to 
measure the energies and momenta, making it “invariant.” By 
analyzing the energies and momenta of the decay products, 
one can calculate the mass of a particle prior to its decay (5). 
This concept is frequently extended to muons emerging from 
a collision, allowing invariant mass to be determined in the 
dataset. 
 Initially, when examining our dataset, we perceived noise 
values to be insignificant in dimuon collisions due to their 
small quantitative nature (ranges from one part in 10 million 
to one part in 100 million depending on the collision). The 
fluctuation-dissipation theorem contradicts this observation, 
stating that even small amounts of noise can lead to large 
fluctuations (6). Work by Kapusta and Young highlights that 
heavy ion collisions are subject to second-order dissipative 
fluid mechanics, which is the study of the densely packed 
matter and energy resulting from particle collisions. It reveals 
the importance of these seemingly small amounts of noise 
(7). Consequently, it becomes crucial to minimize noise 
levels, even at a small scale, as the matter produced can lead 
to severe issues if noise is treated non-perturbatively.
 Background modeling and event reconstruction are 
commonly used to interpret collision data. However, due 
to even small amounts of noise introducing inaccuracies 
or distortions in the detector signals, it can be challenging 
to reconstruct these events. These issues could impair the 
accuracy of these reconstructions and modeling.                                                                                                    
 Issues related to noise profoundly affect background 
modeling and event reconstruction. The primary goal of 
background modeling is to eliminate interference from 
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SUMMARY
Collisions of heavy ions, such as muons result in jets 
and noise. In high-energy particle physics, researchers 
use jets as crucial event-shaped observable objects 
to determine the properties of a collision. However, 
many ionic collisions result in large amounts of 
energy lost as noise, thus reducing the efficiency of 
collisions with heavy ions. The purpose of our study 
is to analyze the relationships between properties of 
muons in a dimuon collision to optimize conditions 
of dimuon collisions and minimize the noise lost. 
We used principles of Newtonian mechanics at the 
particle level, allowing us to further analyze different 
models. We used simple Python algorithms as well 
as linear regression models with tools such as sci-
kit Learn, NumPy, and Pandas to help analyze our 
results. We hypothesized that since the invariant 
mass, the energy, and the resultant momentum vector 
are correlated with noise, if we constrain these inputs 
optimally, there will be scenarios in which the noise of 
the heavy-ion collision is minimized. 

INTRODUCTION
 The Standard Model classifies particles into two categories: 
fermions and bosons. Fermions make up matter and include 
quarks, which combine to form protons, neutrons, and other 
hadrons; and leptons, such as electrons and neutrinos. 
Bosons are responsible for mediating the fundamental forces 
and include the photon (electromagnetic force), gluon (strong 
nuclear force), W and Z bosons (weak nuclear force), and the 
Higgs boson (responsible for giving particle mass) (1). 
 Muons share similar properties with electrons but have 
approximately 207 times more mass (2). Although collisions 
between other subatomic particles, such as gluons, may 
apply to our research because gluon collisions may also 
create noise, our research is based specifically on properties 
of muons which may not be the same as properties of 
different subatomic particles. In dimuon collisions, two muons 
are sent towards each other at high speeds, upon which they 
collide and release energy. We studied specific events in 
CERN particle colliders and visualized them using CERN’s 
visualization software (Figure 1).
 The energy that is produced in these collisions is in the 
form of jets and noise. Jets in particle physics or heavy ion 
experiments are slim cones of hadrons that emerge from the 
hadronization process, wherein quarks or gluons fragment 
into bound states known as hadrons. During these collisions, 
energetic quarks and gluons are generated. As both the 
quarks and gluons travel away from the collision point, they 
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the background and identify desired signals. In heavy ion 
collisions, data from detectors are used to reconstruct particle 
trajectories and properties. Noise can introduce inaccuracies 
or distortions in the detector signals, making it significantly 
more difficult to reconstruct events accurately. As a result, 
these challenges can significantly influence the measurement 
of quantities such as transverse momentum or invariant mass 
of the involved particles (8).
 Another issue caused by noise from collisions is impaired 
particle identification and measurement accuracy. Detectors 
in particle colliders detect the distinct signatures that certain 
particles leave behind. Noise can even mask or even change 
these signatures, causing the identity of a particle to be 
mistaken for another (9).
 To address these problems, we aimed to determine 
how optimizing collision parameters could reduce noise. 
Specifically, we focused on identifying commonalities 
between the top quartile of the events in our data with the 
least noise. Comparing the ranges of the input parameters 
for the full dataset and the top quartile showed us that the 
spreads of the distribution in the top quartile were generally 
between 10% and 50% of the spreads in the full dataset 
(Appendix A). While this seems reasonable, these ranges 
didn’t account for the other parameters such as the momenta 
in different directions and the invariant mass. By addressing 
which factors play a role in noise reduction, our research 
aims to enhance our understanding of noise reduction in 
particle collisions and provide valuable insights for particle 
accelerators to optimize collision processes effectively.  In 
the end, these noise reductions can help us understand how 
to conserve energy in particle accelerators which would lead 
to better collision data from the same.

RESULTS

 We used the mathematical and Newtonian relationships 
between the different properties of the muon (i.e. invariant 
mass, momenta, and energies of the muons). We used the 
matplotlib library in python to graph the relationships between 
different inputs and check for correlations (10). In the scatter 
plot illustrating the relationship between noise (energy lost) 
and each invariant mass and resultant momentum sum, we 
were able to see that the invariant mass did not appear to 
correlate with noise, while the resultant momentum sum 
seemed to have a positive linear correlation with noise 
(Figure 2).  
 The second scatter plot shows the relationship between 
the initial energy of the first muon (E1) and the invariant 
mass (m), revealing a relatively linear correlation (Figure 3). 
However, it is important to keep in mind that the error is large 
for this initial test as it hasn’t been linearized, which in this 
case is very difficult due to the complexity of the equation 
below. 
 Similarly, the relationship between the initial energy of 
the second muon (E2) and the invariant mass (m) shown in 
the third scatterplot mirrors the relationship in the scatterplot 
before it (Figure 4). 
 The next step was the derivation of an equation using 
principles of Newtonian mechanics and principles of the 
conservation of energy to understand which inputs influence 
the noise and which inputs are not necessary to analyze in our 
model. This relationship is a critical portion of our research. 

 In this equation, the components of p in the x direction 
(px1 and px2) represent the momentum of the first and second 
muon along the x-axis in the 3d plane. The components of p 
in the y direction (py1 and py2) represent the momentum of the 

Figure 1: CERN’s simulation/visualization of a dimuon collision. This representation shows two muons colliding within the constraints of 
simulation and displays the properties of such a collision. We created this image using CERN's software.  
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first and second muon along the y-axis in the 3d plane. The 
components of p in the z direction (pz1 and pz2) represent the 
momentum of the first and second muon along the z-axis in 
the 3d plane. Additionally, m represents the invariant mass 
and E1 and E2 represent the initial energies of the first and 
second muon respectively. 
 To confirm that the experimentally determined noise can 
be described by this equation, we used a multivariate linear 
regression model to analyze the trends in the data and found 
that the equation above fits our data with high accuracy. The 

accuracy for the model with feature engineering was roughly 
around 99% which shows our data follows our theoretical 
model with little error. Additionally, we ran the model on 
the 2011 dimuon dataset as well (raw dataset with 100,000 
observations) and got scores of 91% accuracy, confirming that 
the formula is consistent for data sets for dimuon collisions 
outside of the 2010 dimuon collision dataset (contains 50,000 
observations). 
 To find the experimental ranges of our dataset, we used 
mathematical Python functions (Appendix B) as well as the 

Figure 2: Scatter plot of resultant momentum and invariant mass with noise. This figure is a visualization of the relationship between 
Resultant Momentum Sum (green) and Invariant Mass (orange) with Noise (energy lost). The X-axis and Y-axis are measured in GeV. The 
figure shows steep linear relations for the resultant momentum sum but just a cluster for the invariant mass. 

Figure 3: Scatter plot between E1 and M. This figure is a visualization of the correlation between E1 and M. It was useful for visually 
confirming trends with the energy of the first muon and Invariant Mass (M) with respect to GeV. Additionally, it showed a strong linear 
correlation between E1 and M with a large slope magnitude.
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noise equation we derived using methods mentioned in 
materials and methods section to find the ideal ranges that 
would minimize the noise as in the top quartile of our data. 
For our initial parameters, we used the median values of each 
variable within the top quartile and selected the noise to be 
the median of the top quartile of noise values. We then solved 
for each target variable, concerning the other assumed 
values. We then worked backwards to find the ideal ranges 
for the rest of the input parameters. 

DISCUSSION
 Elevated noise levels have a pronounced impact on jet and 
particle identification, rendering the differentiation between 
various particle types and the accurate measurement of 
their momenta and energies challenging. Initially, our dataset 
suggested insignificant noise in dimuon collisions, but the 
fluctuation-dissipation theorem revealed that even minor 
noise could lead to significant fluctuations. Consequently, it 
becomes imperative to minimize noise levels, no matter how 
minor they may seem, as the produced matter could lead to 
inefficient collisions if noise is not treated perturbatively.
 Given the risks associated with high noise levels, our 
research aimed to identify the optimal property ranges of 
muons to avoid the aforementioned problems. To conduct 
dimuon collisions in a particle collider, these ranges would help 
with minimal noise loss and jet optimization. By examining the 
top quartile for noise (noise range), we found the ideal ranges 
for properties of dimuon collisions (Appendix C).  
 Our model was tested and fitted on the 2010 and 2011 
dimuon collision CERN datasets (11, 12). One limitation to this 
is that the data may not be as accurate as newer datasets 
released by CERN, which were taken after significant 
improvements in the accuracy and precision of their particle 
detectors and data storage. Another limitation of our research 
is that our model was only tested on dimuon collisions. While 
these dimuon collisions do share many similarities to other 
heavy ion collisions, we might not be able to explicitly apply 

our research to other heavy ion collisions. It may be possible 
in future studies to generalize our approach to other types of 
particle collisions. 
 By finding ideal ranges for different properties of particles 
in collisions that minimize the amount of noise produced, the 
methods highlighted in this paper can be utilized in future 
experiments so that the outcome of these collisions is not 
masked. This in turn will make it easier to study what happens 
to particles and jets in dimuon collisions. Furthermore, 
background modeling and event reconstruction will be less 
difficult with reduced noise. This could potentially lead to 
more efficient setups in future experiments to minimize the 
amount of noise produced from these collisions. 
 While the ranges found here will apply solely to other 
dimuon collisions of similar nature, noise ranges for many 
other types of particle collisions can be found using similar 
methods. However, for these methods to be viable, there must 
be enough data such that two different sets can be used: one 
to train the model and one to test the model. For example, we 
used the 2010 and 2011 CERN datasets. It is also important 
that the model is not overfitted to the data when making a 
new model for another data set. As a result, it is vital that the 
model should have a number of parameters justified by the 
variables (factors found in the equation). 
 Our proposed ranges for the ideal feature values suggests 
that the ranges for E2 are lower than that of E1 which implies 
that the muon with higher energy should be assigned to the 
first muon and the muon with lower energy should be assigned 
to the second. 
 Our research suggests many other possibilities for future 
experiments. One approach could use a neural network 
instead of a linear regression model. A neural network using 
a similar data set could lead to more accurate findings and 
possibly recognition of other patterns that we could not find 
in the original experiment. Overall, the implications of our 
research may help optimize future experiments in the field 
of particle physics by providing precise ranges of input value 

Figure 4: Scatter Plot Between E2 and M. This figure is a visualization of the correlation between E2 and M. It was useful for visually 
confirming trends with the energy of the second muon and Invariant Mass (M), each in GeV. Additionally, it showed a strong linear correlation 
between E2 and M with a large slope magnitude.
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that decreases the noise of dimuon collisions. 

MATERIALS AND METHODS
 Data from the CERN heavy-ion 2010 and 2011 data sets 
were imported and then cleaned, deleting duplicate values, 
incomplete data rows, and unphysical values. Outliers were 
then isolated and removed by utilizing Python libraries such 
as NumPy, Pandas, Matplotlib, and Seaborn by computing 
the z-score of each data point and comparing it against 
each other (13, 14, 15). These libraries were also useful for 
visualization to see physical patterns and relationships. The 
z-scores were computed through z-score normalization.

Implementing Machine Learning
 A variety of machine learning algorithms were implemented 
using the sci-kit-learn library in Python (16). Mainly, we were 
able to utilize multivariate linear regression, in order for our 
model to function. We built the models using the sci-kit-learn 
library and made appropriate modifications to fit our data. 
Initial accuracies were between 30-40% but through methods 
like normalization and feature engineering, we were able to 
raise that score to above 98% for the 2010 dataset and above 
90% on the 2011 data. We confirmed the 2011 data set with 
both models to make sure this wasn’t a case of overfitting.

Physical Methods/Newtonian Derivation
 When considering a system of two separate particles, the 
law of conservation of energy states that the sum of the final 
energy and the energy lost is equal to the sum of the initial 
energies of both particles. In other words:

We make the following substitution for the Final Energy (17,18):

Finally, we can consider the resultant momentum of each 
particle in each direction (x, y, z), and write the momentum 
vector in terms of these quantities. This yields a final result of 

for the total energy lost (19). 

Statistical Methods
Initially, our data, as displayed by the graphs, was noisy 
and didn’t show clear relationships. Accuracy of the linear 
regression model was also considerably lower. To fix this, we 
found and removed outliers in our data. To identify outliers in 
our data set, we computed the z-score of the noise of each 
collision, using the formula for standard deviation below:

 In this formula, μ is the mean of the population, N is the 
size of the population, and xi is each particular value. Then, 
we removed any value outside 3 standard deviations above 
or below the mean (a z-score of 3 or -3). This was the z-score 
method we used to make the data less skewed and more 
normal. 

 Our original 2010 dataset had exactly 50,000 events, 
but after the z-score method to remove outliers, our dataset 
lost 981 values, retaining 49,021 observations (roughly 
98% of the data). Generally, these outliers were above the 
threshold (z-score greater than 3), and there were very few in 
comparison with the total number of observations. However, 
we judged by empirical rule that the number of outliers we 
excluded was not excessive. 
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