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the most scalable and realistic process of accelerating plastic 
degradation pathways (5). Therefore, our study focuses only 
on metabolic degradation (using enzymes) as a method of 
breaking down PVC polymers. 
	 Since 2005, a great deal of research has been centered 
around identifying specific enzymes capable of degrading 
polyethylene terephthalate (PET), a type of plastic that makes 
up many common consumer goods, such as water bottles 
and clothing (6–8). Moreover, further protein engineering 
studies have developed various computational algorithms 
to optimize these PET degrading proteins (PETases) for 
various properties, such as expanding the temperature 
and pH range they can function (9, 10). These approaches 
have been successful in the past, with some studies using 
these algorithms to identify specific missense mutations that 
improve both the stability and solubility of a protein (11–13). 
We simulated missense mutations, which are mutations in 
which a single DNA nucleotide change results in a different 
amino acid at a given position because of their ability to be 
generated using gene editing techniques. For example, 
some researchers have used gene editing techniques, such 
as CRISPR-Cas9, to create an optimized protein in a lab 
with missense mutations and verify the validity of machine 
learning optimization algorithms (14). One such study by 
Hongyuan et al. used machine learning models similar 
to the ones we used in our study to design an optimized 
PETase enzyme (15). They later synthesized this enzyme 
and, through various experiments, conclusively determined 
that it displayed improved properties compared to the wild-
type enzyme. Similar to Hongyuan et al., our study used a 
process that optimized for protein stability and solubility (15). 
However, we used a novel meta-predictor variant approach, 
which combined two distinct machine learning models to 
make separate predictions about solubility and stability. This 
is expected to perform better than the single model used by 
Hongyuan et al., as the researchers in the study noted that 
some detail was lost in their predictions due to the singular 
model trying to optimize for both traits at once. To counter 
this, models in this study made isolated predictions, and then 
using statistics tests, we determined the mutations with the 
best combination of stability and solubility enhancement.
	 Furthermore, despite the increasing interest regarding the 
identification and mutagenic enhancement of PETases, little 
is known about PVC degrading proteins, called PVCases, 
and their potential applications. This is largely due to the fact 
that PVC polymers lack the hydrolyzable ester bond that is 
found in many other types of plastic, including PET, making its 
enzymatic degradation more challenging (16). As a result, to 
degrade PVC polymers into individual reusable vinyl chloride 
monomers, it is necessary to cleave the carbon bonds within 
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SUMMARY
Plastic accumulating in landfills poses a threat to 
wildlife ecosystems and contributes to the production 
of harmful greenhouse gases. Polyvinyl chloride (PVC) 
accounts for 12% of plastic manufactured worldwide, 
and currently, 79% of post-consumer PVC ends up in 
landfills. Enzymatic degradation of plastic polymers 
into reusable monomers provides a green and 
scalable solution to this expanding problem. However, 
the application of PVC degrading peroxidases in 
real-world environments is impaired by their lack of 
stability and solubility. Fungal lignin peroxidase (E.C 
1.11.1.14), an enzyme expressed by Phanerochaete 
chrysosporium, has previously been identified to 
have PVC degradation properties but, nevertheless, 
is hindered by the same constraints. In our study, we 
hypothesized that mutations in the primary structure 
of lignin peroxidase can improve the stability and 
solubility of the enzyme. To test our hypothesis, we 
utilized publicly available machine learning models 
to pinpoint stabilizing and solubilizing mutations 
of lignin peroxidase. The optimized mutant protein 
(SOS-PVCase: stable, optimized, soluble) contains 
five amino acid substitutions (A112I, A114I, S174K, 
E224M, L291R) which collectively improve stability 
by 18.6% and solubility by 10.2% compared to the 
wild-type enzyme, supporting our hypothesis that 
some mutations can enhance the protein’s stability 
and solubility. This is important, as it allows PVC 
recycling pathways to be accelerated and made more 
economical. Furthermore, this suggests the potential 
of utilizing machine learning for the purpose of protein 
optimization.

INTRODUCTION
	 Polyvinyl chloride (PVC) has become ubiquitous in our 
modern lives, serving a multitude of purposes due to its 
versatility and durability. However, this convenience comes at 
a cost, as PVC poses a major environmental concern since 
it takes centuries to decompose naturally, releases harmful 
chemicals in the decomposition process, and contributes 
significantly to pollution (1). As a result, numerous techniques 
have been tested to depolymerize plastic polymers into 
recyclable monomers, which can then be reused in 
manufacturing plastic products. These breakdown techniques 
include enzymatic degradation, photodegradation, and 
mechanical degradation (2–4). Among the three, enzymatic 
degradation has long been hypothesized in the literature to be 
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the polymer, which is a very energy-expensive reaction that 
only a few enzymes are capable of catalyzing (Figure 1). 
One PVCase of interest, Phanerochaete chrysosporium’s 
lignin peroxidase (PDB: 1LGA), shows promise, as Khatoon 
et al. observed a 31% PVC polymer weight loss using this 
enzyme over the course of four weeks (17). However, current 
PVCases, including P. chrysosporium’s lignin peroxidase, are 
hindered by their lack of stability and solubility compared to 
other plastic-degrading enzymes. Little research has gone 
into the optimization of the few identified PVCases, which is 
the gap that we aim to fill through our study.
	 Improving the stability and solubility of fungal lignin 
peroxidase would allow it to exist in a greater range of 
environments where its wild-type counterparts could not 
(18, 19). This is important for the application of fungal lignin 
peroxidase in landfills since the protein needs to remain 
stable in a variety of conditions to be useful in real-world 
scenarios (17). With the development of optimized PVCases 
being imperative to the faster recycling of PVC in landfills, 
identifying stabilizing and solubilizing mutations in the primary 
structure of lignin peroxidase is an important first step towards 
the large-scale degradation of harmful PVC plastic in a wide 
range of environments. Thus, before the mass production of 
fungal lignin peroxidase can begin, it is critical that we use 
accurate computational and machine learning models in our 
study to identify specific modifications that would enhance 
both the stability and solubility of the enzyme.
	 We used the Mutation Cutoff Scanning Matrix (mCSM), 
a novel supervised machine learning model trained using 
data from the Protein Data Bank (20), to predict the effect 
of missense mutations on the stability of fungal lignin 
peroxidase. This model was chosen over other protein-
stabilizing machine learning methods in the literature due to 
the fact that it is a Convolutional Neural Network (CNN) and 
is trained on a very large and diverse data set (20). CNNs 
are inherently resistant to overfitting, which prevents bias in 
testing predictions and, thus, increases the accuracy of the 
overall model (21). Additionally, a data set with a great deal 
of variety also increases accuracy when it comes to testing 
predictions (22). This advanced architecture was the primary 
factor in the selection of this model over other protein stability 
prediction models in the literature, as they were trained on far 
smaller data sets and had higher rates of overfitting (23, 24).
We also used Aggrescan3D to predict the effect each wild-
type amino acid has on the solubility of a given protein (25). 
This model was chosen over others in the literature because 
it is a Recurrent Neural Network (RNN), and the specific 
hyperparameters used in the original report (including the 
number of layers and learning rate) work especially well for 
the task at hand (26). RNNs are extremely flexible, which is 
important for their successful application in enzyme solubility 
optimization, as enzymes come in a vast range of structures. 
These factors led to the selection of this model for our 
research study over the protein solubility prediction models 
created by Han et al. and Wang et al., as those algorithms 
had much slower learning rates and were not RNNs (27, 28).
	 Overall, we hypothesized that specific modifications to the 
primary structure of fungal lignin peroxidase could optimize 
both the stability and solubility of the enzyme. This goal was 
sufficiently accomplished, as the mutated enzyme, which we 
called Stable, Optimized, Soluble PVCase (SOS-PVCase), 
was predicted to display an 18.6% increase in ΔG (a metric 

used to determine stability) as well as have a 10.2% increase 
in solubility. This increase in protein stability and solubility is 
predicted to result in a greater range of environments where 
the enzyme can be used to break down harmful PVC in 
landfills. 

RESULTS
mCSM Output
	 mCSM finds mutations stabilizing when the mutated 
amino is oriented closer to the geometric center of the protein 
than the wild-type amino acid at that position (making the 
protein more compact), while any mutation that increases 
this distance is considered destabilizing (20). Depending 
on the extent of the distance reduction, some mutations are 
more stabilizing than others. Using mCSM, we identified 712 
stabilizing amino acid substitutions out of the 6,517 potential 
mutations for the 343 amino acids in lignin peroxidase. The 
unit for predicted change in stability by mCSM is the difference 
in Gibbs Free energy (ΔG) in kcal/mol between the wild-
type and mutated protein. A decrease in distance between 
the amino acid and the geometric center of the protein is a 
process that requires an input of energy, making it a stabilizing 
mutation with a positive ΔG value. In contrast,  an increase in 
distance between the amino acid and the geometric center 
of the protein is a process that releases energy, resulting in 
a destabilizing mutation with a negative ΔG value. Of the 712 
stabilizing mutations, the ones with the highest stabilization 
rates were E168M, E168I, and E168L, with ΔGs of 3.034, 
2.786, and 2.786, respectively (Table 1). Of all 6,517 potential 
mutations, the most destabilizing were F210G, F29D, and 
F322D, with ΔGs of -4.02, -4.051, and -4.069, respectively. 

Table 1: Effect of different mutations on protein stability. The 
top 10 most stabilizing mutations by mCSM ranked by the most 
beneficial impact on stability to least beneficial impact. The results 
were obtained by compiling all mutations into a .txt file and inputting 
the file into mCSM’s server site, “Mutation List” mode, along with the 
PDB file of the protein. The single letters for residues correspond to 
the accepted nomenclature for those amino acids.

Figure 1: Polyvinyl chloride depolymerization reaction. Reaction 
scheme of PVC breakdown into vinyl chloride monomers catalyzed 
by fungal lignin peroxidase. The resulting vinyl chloride monomers 
can be reused into other PVC products. 
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Aggrescan3D Output
	 Aggrescan3D finds mutations solubilizing when a 
hydrophobic amino acid near the outer regions of the 
protein is replaced with a hydrophilic amino acid (25). This 
is due to the concept of “like dissolves like,” meaning a polar 
solvent, such as water, can only dissolve polar or hydrophilic 
substances. The amino acids on the outside of the protein 
actually come into contact with water, so having a hydrophilic 
amino acid near the outer regions of a protein instead of a 
hydrophobic amino acid would increase the protein’s overall 
hydrophilicity and, thus, increase the overall solubility of the 
protein. Moreover, depending on how hydrophilic the mutated 
amino acid is and how much contact it has with the solvent 
(how close it is to the outer regions), mutations have different 
solubility scores.
	 Based on Aggrescan3D’s output data about the lignin 
peroxidase wild-type, the most insoluble residues were 
determined. Subsequently, the amino acid substitutions that 
have a positive effect on the stability of the protein were 
inputted into Aggrescan3D to see if they also have a positive 
effect on the solubility. Afterwards, the solubility score of 
the wild-type amino acid was subtracted from the solubility 
score of the mutated amino acid at the same position to 
determine the true solubility score of a mutation. From this, 
the mutations that had a beneficial impact on both solubility 
and stability were determined. Of these mutations, the ones 
with the highest solubilizing rates were L291R, L291H, and 
F215E, with solubility improvement scores of 5.0846, 4.2509, 
and 3.402, respectively (Table 2). Of all mutations tested, 
the most insoluble ones were T76M, T327I, and T327L, with 
solubility deterioration scores of -1.160, -1.835, and -2.302, 
respectively. In total, there were 637 mutations that were 
stabilizing but resulted in a decrease in solubility between the 
wild-type and mutated protein. 

Multiple Criteria Decision Analysis (MCDA) Output
	 After collecting this data from the optimization algorithms, 
we used the Multiple Criteria Decision Analysis (MCDA) 
statistical test to determine which mutations provide the best 
combination of stability and solubility improvement (Table 3). 
A mutation was considered to have a positive impact on these 
metrics if it leads to a positive relative change in stability and 
solubility, where the final value is the stability/solubility value 
of the mutated protein, and the initial value is the stability/

solubility value of the wild-type protein. The five mutations 
with the highest MCDA scores were A112I, A114I, S174K, 
E224M, and L291R, which had MCDA scores of 1.304, 
1.236, 1.218, 1.206, and 1.136, respectively. Collectively, 
they resulted in a 4.708 kcal/mol increase in the ΔG between 
the unfolded and folded state of fungal lignin peroxidase 
(stabilization) as well as an 11.951 increase in solubility score 
(Table 3), using Aggrescan3D’s calculation metric. These 
overall scores were determined by summing the effect each 
of the five mutations had on protein stability and solubility. 
These values also correlate to an 18.6% increase in stability 
and a 10.2% increase in solubility when comparing the wild-
type and mutated proteins.

DISCUSSION
	 We hypothesized that specific modifications could be made 
to the primary structure of fungal lignin peroxidase to improve 
the stability and solubility of the enzyme. Using mCSM and 
Aggrescan3D, we determined the effect of all mutations in 
the primary structure of fungal lignin peroxidase on protein 
stability and solubility. Of the 6,517 possible mutations in 
the primary structure of fungal lignin peroxidase (343 amino 
acids multiplied by the 19 possible substitutions), 712 had a 
positive impact on stability, and just 75 mutations were both 
stabilizing and solubilizing. After extracting the best mutation 
for each position from the data and ranking them based on 
the MCDA test results, we identified the top five mutations to 
optimize fungal lignin peroxidase for stability and solubility: 
A112I, A114I, S174K, E224M, and L291R (Figure 2b). The 
protein with these mutations was called SOS-PVCase.
	 In support of our hypothesis, SOS-PVCase (mutations 
A112I, A114I, S174K, E224M, and L291R) was predicted to 
be far more stable and soluble than the wild-type PVCase. 
Specifically, the mutated protein was predicted to display 
an 18.6% increase in ΔG as well as a 10.2% increase in 
solubility score. Moreover, the mutations collectively result in 
a +3 charge of the protein compared to the wild-type protein. 
This is likely to have made the protein more soluble because 
this increases the electrostatic attraction between solvent 
particles and the protein. For instance, a more positively 
charged protein can form stronger electrostatic attractions 
with the partially negatively charged oxygen atoms of water 
molecules, resulting in even greater dissolution of the protein 
by water solvent particles (30).

Table 2: Effect of different mutations on protein solubility. The 
top 10 most solubilizing mutations determined by Aggrescan3D 
ranked by most beneficial impact on solubility to least beneficial 
impact. Results were obtained by uploading the enzyme PDB file 
to the Aggrescan3D server site and customizing the options as 
described in the methodology. 

Table 3: MCDA scores of various mutations. Beneficial mutations 
ranked by the statistically best combination of solubility and stability 
improvement to the worst combination. Rows highlighted in green 
indicate mutations included in the final optimized protein. The overall 
score is the sum of the percentage of maximum stability (in decimal 
form) and the percentage of maximum solubility (in decimal form). 
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	 These increases in stability and solubility are sufficient to 
warrant a laboratory synthesis study to confirm the benefit 
of the mutations. In another study, synthesized proteins with 
structures optimized using XMutCompute, which is trained 
on data from the Protein Data Bank, similar to mCSM and 
Aggrescan3D, showed stability and solubility improvements 
consistent with the predicted values (15). Furthermore, 
mCSM and Aggrescan3D provide fast, computationally 
inexpensive, and accurate projections about the effect of 
various substitutions. This is important for the worldwide 
application of PVC-degrading enzymes in landfills, as a 
more soluble and stable alternative is critical for maintaining 
depolymerization functionality when exposed to a greater 
range of environmental conditions.
	 With that said one limitation of our study is our assumption 
that non-active site mutations will not inhibit the ability of the 
PVCase to catalyze the depolymerization reaction. While this 
is generally true, we cannot definitively prove that this is the 
case unless the mutated protein is synthesized and tested 
in a real-world experiment (31). If this assumption is proven 
incorrect, it is possible that when synthesizing SOS-PVCase, 
the enzyme is not able to complete the intended function of the 
degradation of PVC plastic. Furthermore, although mutation 
S174K, which was chosen to be included in SOS-PVCase, 
is positioned close to active site residues 176 and 177, it is 
unlikely that it will affect the protein’s function because it is not 
actually in the active site. However, the only way to confirm 
that this mutation (and others) does not change the base 
protein function is to synthesize SOS-PVCase in a lab setting 
and conduct various degradation experiments. 
	 Another limitation of our study is that it only included five 
mutations in the final optimized protein. It is possible that 
additional mutations that improve both stability and solubility 
can be induced without impeding the catalytic function of the 
protein. It is unlikely this is the case, as it has been found in 
literature that additional mutations, even if they are not at the 
active site, continuously increase the risk of impeding protein 
function, but a final conclusion can only be ascertained after 
synthesizing the mutant proteins (31). Additionally, to further 
validate our results, machine learning and computational 

algorithms that calculate protein stability and solubility using 
processes different from the ones used in our study, such 
as utilizing computer vision to identify unstable or insoluble 
areas in proteins, should be applied to wild-type fungal lignin 
peroxidase. 
	 To conclude that the optimization mutations enhance 
PVC degradation as expected, we recommend that further 
investigations use gene editing techniques, such as 
CRISPR-Cas9, to synthesize the optimized SOS-PVCase. 
CRISPR-Cas9 is a relatively simple gene editing process, 
requiring only basic materials owned by most microbiology 
laboratories, such as injection microneedles, guide RNA, and 
restriction enzymes (32). In a series of controlled experiments, 
this optimized lignin peroxidase should be exposed to 
various temperature and pH ranges. Then, researchers 
should document dependent variables, including the exact 
temperature and pH of optimal protein function, which can be 
determined based on the production of vinyl chloride.
	 Notwithstanding the limitations, our study contributes to 
the current knowledge base of enzymatic PVC degradation, 
which severely lags behind those of other types of plastics. 
Furthermore, we used a novel meta-predictor variant 
approach that uses two separate machine learning models 
in combination with statistical tests (e.g. MCDA) to improve 
the stability and solubility of one PVC-degrading enzyme. 
In the future, other enzymes optimized using this approach 
can used for various applications, such as  the military’s 
initiative is preserving critical materials as well as getting rid 
of unwanted materials (33). Another potential application is in 
the Environmental Protection Agency’s search for biological 
solutions to clean up oil spills, for which stable and soluble 
proteins would be essential (34). Additionally, the approach 
used in this study can be used to design enzymes that can 
assist the healthcare system in remediating the current 
medical waste issue, e.g., the accumulation of single-
use latex gloves and masks (35). Overall, SOS-PVCase is 
versatile, as it has the potential to function in a greater range 
of environments (landfills), and it is novel since it has a new 
protein design.

Figure 2: Simulated images of wild-type and mutated fungal lignin peroxidase. a) Wild-type fungal lignin peroxidase. Simulation 
generated by inputting PDB file of fungal lignin peroxidase into the NCBI protein generator (29). The amino acids in gray (including the gray 
sphere near the middle) are substituted in SOS-PVCase. b) Mutated fungal lignin peroxidase SOS-PVCase. The amino acid substitutions 
(A112I, A114I, S174K, E224M, L291R) are circled in white. Simulation generated by inputting PDB file of fungal lignin peroxidase into NCBI 
protein generator and applying mutations. 
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MATERIALS AND METHODS
mCSM: A machine learning algorithm to optimize protein 
stability

	 mCSM calculates protein stability by predicting the ΔG 
(kcal/mol) of a mutation (Equation 1). It does so by first 
calculating the distance, r, between the wild-type residue 
and the geometric center of the protein based on the 
three-dimensional structure. Then, the model is trained 
using a labeled data set where the features are amino acid 
substitutions, and the labels are the change in distance r 
compared to the wild-type residue. This distance r is vital 
to determining the effect of a missense mutation on protein 
stability. A decrease in the value (i.e., a mutation is closer 
to the geometric center) helps stabilize the protein, while an 
increase in r destabilizes the protein. mCSM then converts 
this r value to ΔG energy in kcal/mol using the formula above, 
where R=8.314J/K⋅mol is the ideal gas constant, T is the 
temperature in Kelvin (which in the mCSM simulation, is room 
temperature, i.e., 293K), and r is the distance of the amino 
acid from the geometric center. 
	 Protein stability calculations were obtained using the 
mCSM web server. All sequence mutations were listed in a 
.txt file. The file was uploaded to the “Mutation List” page on 
the mCSM web server, along with the PDB file of the wild-
type protein. The data was downloaded to a .csv file and 
analyzed in accordance with the results obtained from the 
Aggrescan3D output. mCSM predicts how mutations affect 
the stability of a protein by simulating all possible mutations at 
a given position. For example, at position one in the primary 
structure of fungal lignin peroxidase, which is originally the 
amino acid alanine, mCSM simulates all 19 other amino 
residues and returns the substitution that had the most 
beneficial impact on the stability of the protein as an output. 
	 Mutations outputted by mCSM are identified in the 
following format: the single-letter abbreviation for the wild-
type amino acid, followed by the residue position, followed 
by the single-letter abbreviation for the mutant amino acid. 
For example, E168M represents replacing the glutamic acid 
(E) at position 168 in the primary structure substituted with 
methionine (M). The 20 prominent amino acids existing in 
nature and tested in our study are as follows: arginine (R), 
histidine (H), lysine (K), aspartic acid (D), glutamic acid (E), 
serine (S), threonine (T), asparagine (N), glutamine (Q), 
cysteine (C), glycine (G), proline (P), alanine (A), valine (V), 
isoleucine (I), leucine (L), methionine (M), phenylalanine (F), 
tyrosine (Y), and tryptophan (W). 

Aggrescan3D: A computational model to optimize 
protein solubility
	 Based on Aggrescan3D’s output data of the wild-type lignin 
peroxidase, the residues that resulted in the greatest protein 
insolubility were determined (25). Aggrescan3D scored the 
solubility of wild-type residues by calculating aggregation or 
the abnormal association of proteins into larger structures, 
which tend to be insoluble, with lower scores indicating 
greater solubility (36). Proteins tend to aggregate when there 
are many hydrophobic amino acids near the outer regions 
of the three-dimensional structure of the protein (37). This 
causes the protein to be insoluble in various polar solvents 
and be ineffective for its intended purpose. Thus, increasing 

the solubility of lignin peroxidase through mutation enables 
the protein to be more effective at its function (in this case, the 
breakdown of PVC in landfills) for a greater duration of time 
without aggregation. 
	 Subsequently, amino acid substitutions at these predicted 
insoluble positions, which mCSM also predicted to have a 
positive effect on the stability of the protein, were inputted 
into Aggrescan3D to determine if they also have a positive 
effect on the solubility. From this, data was collected about 
the solubilizing potential of various mutations by finding the 
difference between the wild-type solubility score and mutation 
solubility score. 
	 Protein solubility calculations were obtained using the 
Aggrescan3D web server. The PDB file of the wild-type 
protein was uploaded to the web server along with the text 
“Chain A” (mutations were only induced on Chain A of the 
protein because the protein is only composed of a single 
polypeptide). The following options were selected: “Yes” 
for stability calculation, “Yes” for dynamic mode, “Yes” for 
mutated residues, “10A” for distance of aggregation analysis, 
and “Yes” for enhanced protein solubility.

Fungal lignin peroxidase active site
	 Information about the active sites of a protein is provided 
open source by the Protein Data Bank and the National 
Center for Biotechnology Information (38, 39). Primary 
structure sequence positions 43, 46, 47, 48, 66, 68, 70, 176, 
177, 194, 196, 199, 201, and 238 are involved in the active site 
of P. chrysosporium lignin peroxidase (40). The identification 
of the active site of fungal lignin peroxidase is important 
because residues located at the active site cannot be 
substituted for another when trying to optimize the properties 
of a protein. This is because a small change introduced by 
genetic engineering in the active site of an enzyme can have 
a profound effect on the function of the protein, which is not 
the intention of our study (26). Thus, any mutation that was 
predicted to have a positive effect on the stability or solubility 
of fungal lignin peroxidase by mCSM and Aggrescan3D but 
was located at the active site, was disregarded as a potential 
mutation in the final optimized protein. 

Multiple criteria decision analysis
	 A Multiple Criteria Decision Analysis (MCDA) statistics 
test (Equation 2) was used to determine the mutations that 
most improved the stability and solubility of fungal lignin 
peroxidase. Since the goal was to achieve both greater 
solubility and greater stability, the data was normalized 
by dividing each mutation’s solubility or stability value by 
the maximum solubility or stability value achieved by any 
mutation. For example, if a given mutation had a solubility 
score of 0.1 and the maximum solubility score achieved by 
any mutation was 0.5, then the normalized solubility value 
of this mutation would be 0.2 (0.1/0.5). The same logic was 
applied to find the normalized stability of a mutation. Then, 
the overall “score” for any mutation was calculated by adding 
the normalized stability and solubility values. Finally, the 
mutations were ranked based on this overall score, and the 
mutations that provide the best combination of stability and 
solubility improvement were determined.
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Determining SOS-PVCase
	 Many of the substitutions that were beneficial for both 
stability and solubility based on the MCDA test were mutants 
of the same wild-type position. For example, mutants of amino 
acid position 174 held the top two spots for the statistically 
best combination of solubility and stability optimization. The 
final mutant protein cannot have two mutations at the same 
position, and thus, only the mutation with the best score was 
selected to be included in the final optimized protein (SOS-
PVCase) prediction. Furthermore, only five mutations were 
selected to be included in the final protein because, with any 
number greater than that, there is a very high risk of impeding 
the function of the protein, even with the absence of mutations 
in the active site (41). 
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