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world, digital compasses are utilized almost everywhere in 
our daily lives, whether it be navigating through unfamiliar 
terrain, orienting maps on our smartphones, or providing 
heading information for autonomous vehicles. Given the 
extensive use and our increasing dependence on digital 
compasses, it is important to understand the accuracy of 
heading measurements of low-cost devices like those used 
in smartphones. The required heading accuracy for a digital 
compass relies on its application. For example, a transport 
aircraft’s heading reference equipment would require higher 
accuracy than that needed for orienting a smartphone’s digital 
map. In fact, based on RTCA DO-334, the technical standard 
for the certified heading and attitude reference system 
used in civil aviation aircraft, the highest heading accuracy 
requirement under static conditions is 1 degree (i.e., H1 and 
H2 categories) (1). 
	 To obtain accurate heading measurements from a digital 
compass, calibration of its magnetometer is essential. The 
calibration process involves estimating and compensating 
for errors in sensor’s measurements, including hard-iron 
distortions caused by magnetic sources such as current-
carrying wires in the nearby circuits, soft-iron distortions 
caused by ferromagnetic materials in the vicinity of the 
magnetometer, and imperfections arising from manufacturing, 
such as inconsistencies of sensor’s material. Therefore, all 
digital compasses must be calibrated before they are put into 
practical use. 
	 There are currently two categories of magnetometer 
calibration methods (2-9). The methods in the first category 
use dedicated equipment to generate an accurate magnetic 
field and then estimate the calibration parameters based on the 
sensor’s measurements. During the calibration process, the 
magnetometer remains stationary at the calibration location. 
This technique is typically used in factories or laboratories 
where highly accurate calibrations are needed (2). The 
methods in the second category calibrate a magnetometer 
using the Earth’s magnetic field. Instead of being stationary 
like in the first category, the magnetometer is required to 
rotate in the Earth’s 3D magnetic field. Through the 3D 
motion, the sensor calibration parameters are observable and 
then can be estimated from the raw measurements obtained 
during the rotation. The second category’s methods are more 
appealing to application engineers and end users since they 
do not require any expensive calibration equipment and can 
be performed almost anywhere on the Earth (3).
	 Many published papers discuss various algorithms related 
to the calibration technique in the second category (3-9). A 
comprehensive review is provided in (3). Additionally, there 
are calibration algorithms implemented as software tools 
currently available online (10, 11). However, there are two 
issues with existing algorithms. First, many of the existing 
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heading measurements for end users, magnetometer 
calibration is a vital step to mitigate magnetic 
measurement distortions caused by hard-iron 
and soft-iron effects. However, current calibration 
approaches are often complex and lack performance 
evaluation at different noise levels. In this paper, we 
present a novel and efficient calibration algorithm 
that is conceptually simpler than most existing 
calibration methods and can be easily implemented. 
We hypothesized that a low-cost magnetometer 
as used in a smartphone would achieve 1-degree 
heading measurement accuracy after calibration 
using our new algorithm. Before applying this 
new algorithm to real-world data, we verified its 
effectiveness through numerical simulations. Our 
study demonstrated that, as the signal-to-noise 
ratio (SNR) increased, the root-mean-squared errors 
(RMSEs) of the estimated calibration parameters 
approached the corresponding Cramer-Rao bounds 
(CRBs). Experimental results showed that a magnetic 
heading accuracy of 1.37 degrees was attained for a 
smartphone located in Texas, U.S.A., which was more 
accurate than the heading accuracy obtained using 
the smartphone’s internal calibrated data. This study 
suggests that our calibration approach can allow 
low-cost magnetometers to provide highly accurate 
heading measurements, offering a cost-effective 
solution for various applications, including precise 
navigation.

INTRODUCTION
	 A digital compass, also known as an electronic compass, 
is used to indicate the heading of an object relative to the 
Earth's magnetic field. Unlike traditional compasses that 
rely on a magnetic needle to point toward the Earth's 
magnetic north, digital compasses employ a sensor called a 
magnetometer to measure the Earth’s three-dimensional (3D) 
magnetic field. Based on the magnetometer’s measurements, 
digital compasses use computational algorithms to determine 
magnetic heading information with greater accuracy compared 
to traditional compasses. In today's technology-driven 
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calibration algorithms are very complicated. For example, 
they need to compute Jacobian and Hessian matrices or 
use Kalman filter frameworks, which are computationally 
expensive and require prior training to interpret (4, 6, 8). 
Transforming these sophisticated algorithms into embedded 
code suitable for real-time systems, like smartphones, is 
a non-trivial task for end users. Second, the literatures for 
most of these existing algorithms do not contain rigorous 
numerical simulation to demonstrate algorithm’s performance 
at different noise levels and to compare their performance 
against the Cramer-Rao bounds (CRBs), which provide the 
ultimate performance limits for unbiased estimators (12). 
Therefore, there is no easy way to see how an algorithm’s 
accuracy changes as the noise level changes.
	 In this study, we show how we effectively calibrated the 
raw output from a digital compass’s magnetometer to evaluate 
its heading measurement accuracy. We hypothesized that 
a smartphone’s low-cost digital compass could achieve 
a high heading measurement accuracy of 1 degree with 
effective calibration. We first introduced and tested a novel 
magnetometer calibration algorithm, which is a second-
category approach. Unlike existing algorithms that conduct 
optimization simultaneously for all unknown parameters, 
our new algorithm decomposes the high-dimensional 
optimization problem into multiple one-dimensional (1D) 
optimization problems which makes algorithm implementation 
much simpler, as it eliminates the need for a high-dimensional 
optimization algorithm. We then tested the accuracy of our 
algorithm through numerical simulation experiments. We 
found that the new algorithm’s performance could not reach 
the estimation accuracy levels defined by CRBs. However, 
the root-mean-squared errors (RMSEs) of the estimated 
calibration parameters tended to converge toward the 
corresponding CRBs of the first-category approach as 
the signal-to-noise ratio (SNR) increased. Furthermore, 
we conducted heading accuracy experiments using real-
world magnetometer data obtained from a smartphone on 
a turntable. We applied our new calibration algorithm to the 
raw measurements collected from the phone and achieved 
a final heading accuracy of 1.37 degrees. Our study shows 
that, although the testing result from a magnetometer used 
in a smartphone does not support our hypothesis of attaining 
1-degree accuracy, the final heading accuracy of 1.37 degrees 
is close to the target value and is noticeably better than the 
heading accuracy obtained using the smartphone’s internal 
calibrated data. With this level of heading accuracy, new 
possibilities emerge, enabling applications such as precise 
navigation without the need for expensive equipment.

RESULTS
Numerical Simulation Results
	 Our new calibration algorithm is essentially a method 
to deduce a set of deterministic parameters from imprecise 
measurements. A detailed description on the magnetometer 
measurement model and the problem statement are 
provided in Appendix A. Before applying our new algorithm 
to the real-world data, we intended to understand the 
algorithm's performance at different noise levels using the 
numerical simulation method. We evaluated the algorithm’s 
performance by comparing RMSE values obtained by Monte-
Carlo simulations against the corresponding CRBs. 
	 Based on the numerical simulation, we observed that 

the RMSEs of all parameter estimates obtained by the new 
algorithm came close to their corresponding CRBs as the 
SNR increased (Figure 1). The results showed that the new 
algorithm performed poorly at the low SNR region (SNR < 
30), where the RMSEs of all estimates deviated from the 
corresponding CRBs (Figure 1). The simulation results 
clearly demonstrated that the new algorithm can accurately 
estimate all unknown calibration parameters for simulated 
magnetometer measurements with moderate to high SNRs.

Real-World Experimental Results
	 Through real-world experiments, our aim was to test our 
hypothesis that the magnetometer as used in a smartphone 
would achieve 1-degree heading measurement accuracy 
after calibration using our new algorithm. We applied the 
new calibration algorithm to the magnetometer data collected 
outdoors from a smartphone (iPhone 13 Pro Max). The 
calibrated measurements formed a nearly perfect sphere 
around the origin, which indicated a successful calibration 
(Figure 2). To evaluate the effectiveness of the calibration 
from another perspective, we also computed the magnitude 
residuals of the calibrated data. The standard deviation of 
magnitude residuals for the calibrated data was only about 
2.6 milli-Gauss, which was a very small value in comparison 
to the magnitude of the local magnetic field of 482.1 milli-
Gauss at Southlake, TX (13). The small magnitude residuals 
confirmed the effectiveness of this calibration, especially when 
compared with magnitude residuals from the smartphone’s 
raw data (Figure 3). 
	 We then conducted a heading accuracy test on a 
homemade turntable. We computed the magnetic heading 
for each heading station using the calibrated magnetometer 
data. When we rotated the device for two full revolutions 

Figure 1: Comparison of the RMSEs and CRBs for magnetometer 
calibration parameters obtained using the proposed calibration 
algorithm. RMSEs and CRBs for a) bias estimates, b) scale factor 
estimates, and c) cross-axis coupling term estimates. Note that the 
x-axis represents the SNR, computed as the square of the overall 
magnitude of the Earth's magnetic field (M) divided by the variance 
of the measurement noise (σ), as shown in equation a6 (Appendix A).
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with a total of 74 heading stations, the maximum heading 
measurement error was 1.37 degrees, and the two times root-
mean-squared (2-RMS) value of the heading errors was 1.2 
degrees. Note that the final heading accuracy of 1.37 degrees 
is very close to the target value and is noticeably better than 
the heading accuracy  of 1.98 degrees obtained by using 
smartphone internal calibrated data (Figure 4). 

DISCUSSION
	 In this study, we proposed a new calibration algorithm and 
intended to test the hypothesis that a smartphone’s low-cost 
digital compass could achieve a high heading measurement 
accuracy of 1 degree with effective calibration. Before applying 
our new algorithm to the real-world data, we investigated the 
algorithm's estimation accuracy at different noise levels using 
the numerical simulation method. 
	 The algorithm’s estimation accuracy depends on 
the magnitude of the applied noise. The lower the noise 
magnitude, the better the estimation accuracy (i.e., the 
smaller the RMSE). To characterize the noise level utilized 
in the simulation, we defined SNR as the division of the 
square of the overall magnitude of the Earth's magnetic field 
(numerator) by the variance of the applied measurement 
noise (denominator), as shown in equation (a6). It should be 
noted that for a measurement model at a given SNR level, 
the algorithm’s estimation accuracy measured by RMSE is 
constrained by a fundamental value called the Cramer-Rao 
bound (CRB). In simple terms, the CRB sets a limit on how 
precise a parameter can be estimated using a set of observed 
data that is influenced by noise (12). (For a comprehensive 
derivation of the CRB, please refer to Appendix B.) It is 
worth mentioning that the CRB can be derived from the data 

measurement model. However, knowing the CRB does not 
mean that one could easily design an estimation algorithm 
to achieve such an accuracy limit, especially for those high 
dimensional non-linear estimation problems. Indeed, an 
important goal for designing an estimation algorithm is to 
ensure its RMSE (obtained through numerical simulation) are 
capable of attaining the CRB. 
	 In numerical simulations, we compared the RMSE of the 
calibration parameter estimate with the CRB. We found that 
the RMSEs of the calibration parameter estimates suddenly 
approached the CRBs when the SNR was above a threshold 
of 30 (Figures 1a, 1c). This is because, in the low SNR region, 
the algorithm failed to provide reliable estimates likely due to 
the local minimums of the cost function. In fact, our simulation 
showed that when the SNR was too low, the estimation 
results failed to converge to a stable value even after reaching 
the maximum number of iterations (set to 200 in our test). 
Once the SNR is high enough and passes the threshold, 
our calibration algorithm can provide meaningful estimates 
with accuracies that are very close to the corresponding 
CRBs. Typically, the estimation results converged within 20 
iterations. As will be discussed later, the SNR for the real-
world measurements is usually much higher than 30. It should 
be noted that understanding the algorithm behavior at the low 
SNR region remains important, and further investigation on 
how to improve algorithm performance at the low SNR region 
is considered as a future direction for this study. 
	 Interestingly, we also observed a slight gap between the 
RMSE lines from the simulation results and the corresponding 
CRB lines (Figure 1). This is likely because the derivation 
of the CRB falls under the first category of calibration 
approaches, which assume that the magnetic field inputs on 
all three axes are known in order to simplify the derivation. 
In contrast, our algorithm relies solely on the knowledge that 
the magnitude of the magnetic field is a known constant. 
Due to the limited information on the magnetic field inputs, 
our algorithm does not produce as optimal results as CRBs, 
but the difference is small especially in the high SNR region. 
It is possible to use known magnetic input data to calibrate 
the magnetometer. However, using known magnetic inputs 
for calibration falls into the first category of magnetometer 
calibration methods as discussed in the introduction. We do 

Figure 2: Calibration results based on real magnetometer 
data recorded from a smartphone. The red dots denote the raw 
sensor data. The black dots denote the calibrated data. The unit of 
measurement shown in the plots is in milli-Gauss (mG). a) 3D view 
of the real measurements. b) 2D projection of measurements on mag 
x and mag z axes. c) 2D projection of measurements on mag y and 
mag z axes. d) 2D projection of measurements on mag x and mag 
y axes. The estimated calibration parameters are shown in Table 1.

Figure 3: Magnitude differences (i.e., residuals) between the 
magnetometer data and the reference magnetic field strength 
of 482.1 milli-Gauss. (a) The red line denotes the magnitude 
difference from the raw data. The black line denotes the magnitude 
difference from the calibrated data. (b) Histogram of the calibrated 
data magnitude residuals as shown in the black line in (a). The 
standard deviation for magnitude residuals from the calibrated data 
is about 2.6 milli-Gauss.
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not consider those methods in this study since they rely on 
specialized equipment to generate a precise magnetic field. 
A separate study could be conducted for first category of 
magnetometer calibration methods in the future.
	 Although our algorithm provides sub-optimal results, the 
RMSEs can be very small in practical applications if the SNR 
is high enough, as demonstrated in the numerical simulations. 
For example, when calibrating a magnetometer in the 
Earth’s magnetic field in the continental United States, the 
Earth’s magnetic strength is about 0.5 Gauss. Moreover, we 
conservatively assume that the standard deviation of sensor 
measurement noise is 4 milli-Gauss. With that, we can have a 

SNR level of 1.56x104 (i.e., (0.5/0.004)2, see equation (a6)) for 
the raw measurements. At this practical SNR level, our new 
algorithm is capable of providing very accurate estimates for 
all calibration parameters (Figure 1). 
	 For the real-world experiment, we used an iPhone 
13 Pro Max for magnetometer data collection. The raw 
magnetometer data were significantly distant from the origin, 
which was due to the strong hard-iron distortions from the 
phone. Note also that the calibrated data showed a nearly 
perfect sphere shape around the origin (Figure 2). Since the 
standard deviation of magnitude residuals for calibrated data 
was about 2.6 milli-Gauss and the local Earth’s magnetic 
field strength at Southlake, Texas was 482.1 milli-Gauss, 
this corresponded to a SNR of about 3.4x104 which was 
sufficient to generate accurate estimates for all calibration 
parameters based on our simulation study (Figure 1). The 
calibration parameters converged in 10 iterations using the 
new calibration algorithm. Inspecting the estimated hard-iron 
and soft-iron calibration parameters from this test, we noticed 
the significant by value of 0.46 Gauss and the scale factor 
term sy of 0.94, along with small cross-axis coupling terms 
described in Appendix A (Table 1). Note that by represents 
the hard-iron offset along the y-axis, and the term sy denotes 
scale factor for the y-axis, with a nominal value of one. Their 
values indicated the presence of substantial hard- and soft-
iron errors in the raw magnetometer data, likely introduced by 
internal hardware components within the iPhone. 
	 We observed from the heading accuracy test results 
that the maximum heading measurement error using the 
calibrated magnetometer data was 1.37 degrees, and the 
2-RMS value was 1.2 degrees. For comparison, we computed 
heading values based on the smartphone’s internal calibrated 
magnetometer data that were simultaneously recorded with 
the raw data during the heading accuracy test. Using that 
data, we found the maximum heading measurement error to 
be 1.98 degrees with a 2-RMS value of 1.57 degrees (Figure 
4). It is clear from this experiment that our calibration is more 
accurate than that of the smartphone (Figure 4d). We noticed 
that the final heading errors seem to have a systematic 
pattern with stations (Figure 4c).  It is worth noting that a 
portion of the errors from the heading accuracy test could be 
due to imprecision when manually aligning the smartphone 
at a given heading station on the homemade turntable. In 
the future, we plan to use more precise reference systems, 
such as a computer-controlled turntable, for the heading 
accuracy test. We also computed heading results based 
on the raw magnetometer data. However, the raw data 
contained significant hard-iron errors, making it unsuitable 
for deriving any meaningful heading values; because of that, 
the corresponding heading results were not provided here. 
According to DO-334, the heading accuracy is evaluated 

Figure 4: Heading accuracy based on the calibrated 
magnetometer data from a smartphone. (a) The 5-seconds-
averaged magnetometer data (after calibration) at 74 different 
heading stations. The heading stations are separated by 10 degrees 
(deg). (b) The estimated magnetic headings from the magnetometer 
against the reference headings. Note that we have subtracted the 
computed magnetic headings with an offset value so that the heading 
output from the magnetometer at the first station is exactly 0 degrees. 
(c) The headings errors from the magnetometer. Using our calibrated 
data, we found that the maximum heading error was 1.37 degrees, 
and the 2-RMS value was 1.2 degrees, denoted as the “New Cal”. 
Conversely, with the smartphone's internally calibrated data, we 
observed a maximum heading error of 1.98 degrees and a 2-RMS 
value of 1.57 degrees, labeled as the “iPhone Cal”. (d) Comparisons 
of the mean, the standard deviation, the minimum, and the maximum 
of heading errors between those obtained from our calibrated results 
(i.e., New Cal) and those from smartphone internal calibrated results 
(i.e., iPhone Cal) as shown in (c). Blue blocks indicate the span of 
standard deviation and gold blocks indicate the span of minimum 
and maximum errors.

Table 1: Hard-iron and soft-iron parameters. Row #1 shows the predefined hard-iron and soft-iron parameters that are used for numerical 
simulation. Row #2 shows the estimated hard-iron and soft-iron calibration parameters based on the real magnetometer data from a 
smartphone.
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as either maximum or 2-RMS of the measurement errors, 
whichever is larger (1). From that, we conclude that our test 
results do not support our original hypothesis of 1-degree 
accuracy. Nevertheless, the heading accuracy of 1.37 degrees 
from our test was close to the target value and, in fact, met the 
H3 category of 1.5 degrees accuracy as defined in DO-334. 
These results show the promise that our calibration approach 
allows low-cost magnetometers to provide highly accurate 
heading measurements in the real world.

MATERIALS AND METHODS
New Calibration Algorithm 
	 It can be seen from equations (a7) and (a8), as shown 
in Appendix A, that the task here is to solve an optimization 
problem with a total of nine unknown parameters. Instead of 
optimizing all parameters simultaneously, our new method 
conducted the optimizing process sequentially on each 
parameter and iterated the process until results converged. 
The detailed algorithm steps are outlined as follows.

Step #1: Initialization. Set the estimates for the bias terms 
bx, by, and bz to 0, set estimates for kx, ky, and kz to 1, and set 
estimates for βxy, βxz, and βyz to 0. 
Step #2: Fixing all other estimation parameters, optimize bx 
by conducting a 1D search based on equation (a8). Once the 
optimal bx (i.e., the one that minimizes the cost function J) is 
found, update the current estimate for bx and then repeat the 
same process for by and bz.
Step #3: With the updated estimates, apply the same process 
as described in Step #2 to estimate kx, ky, and kz.
Step #4: Apply the same process as described in Step #3 to 
estimate βxy, βxz, and βyz.
Step #5: Iterate Steps #2 to #4 until all estimates converge or 
the predefined maximum iteration number has been reached.

Below are a few remarks regarding our new algorithm.
1) We optimized the bias terms first, followed by the scale 
factor terms, and lastly the misalignment terms. This 
sequencing was based on our empirical experience, and our 
numerical simulations confirmed that this sequence produced 
the most favorable optimization results.
2) Instead of optimizing sx, sy, sz, αxy, αxz, and αyz, the algorithm 
conducted 1D optimization on kx, ky, kz, βxy, βxz, and βyz so 
that matrix inversion operation can be avoided during 
the compensation step. Once kx, ky, kz, βxy, βxz, and βyz  are 
obtained, sx, sy, sz, αxy, αxz, and αyz can be easily recovered by 
a matrix inverse operation.
3) For 1D optimization, we used the golden-section search 
approach (14). The search stopped when the absolute change 
(as compared with the previous result) was less than 10-7. 
4) The optimization ranges for bx, by, and bz were set from -2 
to 2 Gauss. The optimization ranges for kx, ky, and kz were set 
from 0 to 2. The optimization ranges for βxy, βxz, and βyz were 
set from -1 to 1.
5) The maximum iteration number was set as 200. The 
iterations also stopped when the sum of absolute changes 
(as compared with the results obtained from the previous 
iteration) for all parameters was less than 10-6.
	 It is noteworthy that the new algorithm does not require 
any sophisticated math operations such as the computation 
of the derivative terms of the cost function. It only needs a 
simple 1D numerical search for a local minimum, which can 

be implemented easily.

Numerical Simulation Setup
	 During the numerical simulation process, we first identified 
a set of input parameters, such as hard-iron, soft-iron, and 
scale factor terms, that can influence the outcome of the 
magnetometer measurements (Table 1). Next, we generated 
the magnetometer measurements using the measurement 
model described in equation (a1). To simulate the imprecise 
measurements commonly obtained in the real world, we 
added random noise generated from a known Gaussian 
probability distribution to these measurements. Using the 
measurements affected by random noise as the input, we 
ran the new calibration algorithm to compute the output of a 
total of nine magnetometer calibration parameters as defined 
in equation (a1). Once the simulation finished running, we 
gathered the estimated calibration parameters and compared 
them with the truth reference values to obtain the estimation 
error for each parameter.  It is important to note that the 
estimation error of each parameter is also a random variable 
influenced by the applied random noise. Therefore, to assess 
the statistical properties of those estimation errors, we need 
to run the simulation multiple times. After repeating the 
simulation process for a large number of times (set to 200 in 
our test), with the random noise generated and applied each 
time, we then computed RMSE for each parameter based on 
the estimation errors from all trials. The RMSE value is crucial 
in the context of the numerical simulation since it serves as 
a metric for evaluating the estimation accuracy of the new 
algorithm. A smaller RMSE value indicates a higher degree 
of estimation accuracy. Note also that the above simulation 

Figure 5: Simulated noise-free magnetometer measurements 
used to test the new calibration algorithm. Blue dots denote 
1000 points of truth measurements that are evenly distributed on a 
sphere with a radius of 482.1 milli-Gauss (mG). Red dots denote the 
measured magnetometer outputs that are distorted by the soft-iron 
and hard-iron effects with parameters listed in Table 1. a) 3D view of 
the simulated measurements. b) 2D projection of measurements on 
mag x and mag z axes. c) 2D projection of measurements on mag 
y and mag z axes. d) 2D projection of measurements on mag x and 
mag y axes.
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approach is commonly referred to as a Monte-Carlo 
simulation, as the method relies on randomness, probability, 
and a substantial number of trials, much like games of chance 
at the famous Monte-Carlo Casino in Monaco.
	 The numerical simulation was conducted using MATLAB® 
(version 2023a). We used an open-source MATLAB script to 
compute 1000 points of truth measurements that are evenly 
distributed on a sphere (Figure 5) (15).  The magnetic field 
strength (i.e., the radius of the sphere) was set as 482.1 milli-
Gauss to match the local magnetic field strength in Southlake, 
Texas. Based on the predefined nine sensor error parameters, 
distorted measurements without noise were generated based 
on equation (a1) (Table 1, Figure 5). At each SNR level, 
200 experiments were conducted with independent random 
Gaussian noise being applied to each experiment. The 
RMSE values for each parameter were computed based on 
the estimation results from those 200 experiments. 

Real-World Experimental Setup
	 An iPhone 13 Pro Max with an iOS app named “Sensor 
Play – Data Recorder” was used to collect real-world 
magnetometer data (16). The app offers two sets of outputs 
from the iPhone’s magnetometer: the raw values and the 
calibrated values. To make our testing results independent of 
the iPhone’s internal calibration scheme, we only applied our 
calibration algorithm to the raw values. The magnetometer 
data were sampled at 25 Hz. We collected data for the 
calibration data set for about 50 seconds while standing in an 
outdoor football field and rotating the iPhone by hand for all 
possible orientations. 
	 After we obtained the estimated hard-iron and soft-
iron calibration parameters from the calibration data set, 
we conducted a heading accuracy test using a homemade 
turntable, which was a wooden box made of plywood with 
dimensions of 13 inches (L) x 10 inches (W) x 4 inches (H) 
(Figure 6). In our experiment, the turntable and the attached 
compass protractor were fixed to the ground. The smartphone 
was positioned in various orientations, guided by the markers 
on the compass protractor. We set up the turntable in a 
magnetically clean environment where there were no ferrous 
materials present. The top of the turntable was carefully 
leveled by using a bubble level. We then manually set the 
iPhone’s heading for two full revolutions with a total of 74 
stations based on the mark of the compass protractor. The 
first revolution was from 0 to 360 degrees with a station every 
10 degrees apart (37 stations) and the second revolution 
was from 5 degrees to 365 degrees with a station every 10 
degrees apart (37 stations). At each station, the iPhone was 
kept stationary for about 7 seconds. We used 5-second-long 
averaged data per station for heading computation. 
	 Based on the calibration parameters obtained in the 
previous step, the raw data collected from the turntable were 
compensated to obtain the hard-iron and soft-iron distortion-
free measurements. To compute a magnetic heading from 
the 3D magnetometer data, the measurements from the 
magnetometer need to be obtained in the local level frame, 
which is the coordinate system that is parallel to the Earth’s 
local tangent. Although the top surface of our turntable 
aligned with the local level frame, placing the smartphone 
on the table may introduce slight misalignments between 
the magnetometer body axis frame and the top surface 
of the turntable.  For an accurate heading estimate, we 

need to account for those small malignments. With a valid 
misalignment compensation, the down component (i.e., mz) 
and the horizontal component (i.e., ) of the 
magnetometer measurement should be constant values that 
are independent of heading orientation (7). Using this fact, we 
estimated the pitch misalignment angle as 0.57 degrees and 
the roll misalignment angle as -1.93 degrees for our test setup. 
The method for estimating pitch and roll misalignment angles 
is described in detail in Appendix C. Once we compensated 
those misalignments in the calibrated data from the heading 
accuracy test, the magnetic heading can be computed using 
the formula of

where       and      indicate magnetometer x-axis and y-axis 
measurements, respectively, in the local level frame (7). For 
the final heading accuracy evaluation, instead of directly 
comparing the measured magnetic heading against a ground 
truth of the magnetic heading, which is hard to obtain, 
we accessed the relative change between the measured 
magnetic heading and the first reference heading point. The 
ground truth for the relative change of the measurement 
magnetic heading was determined by the markers on the 
compass protractor affixed to the turntable.
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Figure 6:  The real-word experiment setup. An iPhone 13 Pro Max 
with an app called “Sensor Play – Data Recorder” (by Philip Broder) 
is used to collect data on top of a homemade turntable, which is a 
wooden box made of plywood with dimensions of 13 inches (L) x 10 
inches (W) x 4 inches (H). The iPhone was attached to a thin plastic 
plate using adhesive stickers. The thin plastic plate could pivot freely 
on the top of the turntable, rotating about the center of the compass 
protractor. Using the marker line drawn on the thin plastic plate, we 
were able to manually align the plastic plate and the attached iPhone 
to the desired heading marks on the compass protractor.
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APPENDICES  1 

A. Data Model for Magnetometer Measurements  2 
Assume that 𝑁 independent measurements are taken from a three-axis (denoted as 𝑥, 𝑦, and 𝑧 3 

axis) magnetometer device. The measurements can be modeled as 4 

%
𝑥(𝑛)
𝑦(𝑛)
𝑧(𝑛)

) = +
𝑠! 𝛼!" 𝛼!#
𝛼!" 𝑠" 𝛼"#
𝛼!# 𝛼"# 𝑠#

. ⋅ %
𝑚!(𝑛)
𝑚"(𝑛)
𝑚#(𝑛)

) + %
𝑏!
𝑏"
𝑏#
) + %

𝑒!(𝑛)
𝑒"(𝑛)
𝑒#(𝑛)

) ,			𝑛 = 1,2, … ,𝑁                   (a1) 5 

where 𝑏!, 𝑏", and 𝑏# are bias terms for each sensing axis; 𝑠!, 𝑠", and 𝑠# are scale factor terms; 6 

𝛼!", 𝛼!#, and 𝛼"# are for misalignment or cross-axis coupling terms; 𝑚!(𝑛), 𝑚"(𝑛), and 𝑚#(𝑛) 7 

are the Earth’s current magnetic field projected onto each magnetometer sensing axis; and 𝑒!(𝑛), 8 

𝑒"(𝑛) , and 𝑒#(𝑛)  are measurement noise terms and are assumed as zero-mean Gaussian 9 

random variables with a variance of 𝜎$ (3).  10 

To help understand the magnetometer measurement model, equation (a1) is briefly explained as 11 

follows. First, consider only the x-axis. Without the Earth's magnetic field, the sensor’s reading 12 

will be just 𝑏!, which is the hard-iron distortion generated by the circuits around the sensor. Next, 13 

without effects from the hard-iron distortion, the sensor’s reading from the Earth’s magnetic field 14 

is 𝑠! ∙ 𝑚!(𝑛) + 𝛼!" ∙ 𝑚"(𝑛) + 𝛼!# ∙ 𝑚#(𝑛), where 𝑠!, 𝛼!", and 𝛼!# can be introduced by soft-iron 15 

distortion when the sensor is close to a ferromagnetic material, such as an iron object. By 16 

superposition and considering noise, we have 17 

 𝑥(𝑛) = 𝑠! ∙ 𝑚!(𝑛) + 𝛼!" ∙ 𝑚"(𝑛) + 𝛼!# ∙ 𝑚#(𝑛) + 𝑏! +	𝑒!(𝑛).                            (a2) 18 

Similar derivations can be used to obtain y-axis and z-axis measurements as 19 

𝑦(𝑛) = 𝑠" ∙ 𝑚"(𝑛) + 𝛼!" ∙ 𝑚!(𝑛) + 𝛼"# ∙ 𝑚#(𝑛) + 𝑏" +	𝑒"(𝑛),                           (a3) 20 

and 21 

𝑧(𝑛) = 𝑠# ∙ 𝑚#(𝑛) + 𝛼!# ∙ 𝑚!(𝑛) + 𝛼"# ∙ 𝑚"(𝑛) + 𝑏# +	𝑒#(𝑛).                            (a4) 22 

Equations (a2) to (a4) above can be generalized to a matrix formation as shown in equation (a1). 23 

We can also see from equations (a2) to (a4) that, due to the hard-iron and soft-iron effects, the 24 

sensor outputs can no longer truthfully represent the measurements of the Earth’s 3D magnetic 25 

field. Therefore, without proper calibration and compensation, error will be introduced to the 26 

heading estimation. 27 
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The goal for the calibration algorithm is to find nine unknown parameters of 𝑏!, 𝑏", 𝑏#, 𝑠!, 𝑠", 𝑠#, 28 

𝛼!", 𝛼!", and 𝛼!" based on 𝑁 raw measurements of 𝑥(𝑛), 𝑦(𝑛), and 𝑧(𝑛). Note that the applied 29 

the Earth’s magnetic field on each sensing axis is unknown. However, the overall magnitude of 30 

the Earth’s magnetic field, 𝑀, is typically known and is assumed to be constant at the place of the 31 

calibration. The magnitude of the Earth’s magnetic field can be defined as 32 

 𝑀 ≜ =𝑚!
$(𝑛) + 𝑚"

$(𝑛) + 𝑚#
$(𝑛) .                                                    (a5) 33 

In this study, we define the signal-to-noise ratio (SNR) as  34 

SNR ≜ %!

&!
 ,                                                                     (a6) 35 

where 𝜎$ is the variance of the measurement noise. If we assume all the nine calibration 36 

parameters are estimated, the calibrated measurements can be obtained by the reversed 37 

operation in equation (a1) as 38 

%
𝑚A!(𝑛)
𝑚A"(𝑛)
𝑚A#(𝑛)

) = %
𝑘! 𝛽!" 𝛽!#
𝛽!" 𝑘" 𝛽"#
𝛽!# 𝛽"# 𝑘#

) ⋅ D%
𝑥(𝑛)
𝑦(𝑛)
𝑧(𝑛)

) − %
𝑏!
𝑏"
𝑏#
)F ,			𝑛 = 1,2, … ,𝑁                  (a7) 39 

where %
𝑘! 𝛽!" 𝛽!#
𝛽!" 𝑘" 𝛽"#
𝛽!# 𝛽"# 𝑘#

) is the inverse of +
𝑠! 𝛼!" 𝛼!#
𝛼!" 𝑠" 𝛼"#
𝛼!# 𝛼"# 𝑠#

. and is also a symmetric 3x3 matrix. 40 

As shown in reference (3), with a given set of raw measurements, we can estimate the nine 41 

unknown parameters by minimizing the following cost function:  42 

𝐽 ≜ ∑ I𝑚A!$(𝑛) + 𝑚A"$(𝑛) + 𝑚A#$(𝑛) − 𝑀$J$'
()*                                         (a8) 43 

Note that the above optimization problem is equivalent to a sphere-fitting problem. Note also that 44 

we need to have varied values of 𝑚!(𝑛), 𝑚"(𝑛), and 𝑚#(𝑛) to avoid the singularity problem in 45 

parameter estimation. This means we need the magnetometer to face different directions when 46 

collecting calibration data. 47 

B. Derivation of CRBs 48 

The Cramer-Rao bound (CRB) is a powerful statistical tool that relates to the estimation of a 49 

deterministic parameter. To make this paper self-contained, we provide derivations on this 50 

important tool based on the data model as provided in equation (a1). 51 
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Define 52 

𝐞(𝑛) ≜ [𝑒!(𝑛) 𝑒"(𝑛) 𝑒#(𝑛)]+,                                                       (b1) 53 

𝐦(𝑛) ≜ [𝑚!(𝑛) 𝑚"(𝑛) 𝑚#(𝑛)]+,                                                   (b2) 54 

𝐛 ≜ [𝑏! 𝑏" 𝑏#]+,                                                                      (b3) 55 

𝐓 ≜ +
𝑠! 𝛼!" 𝛼!#
𝛼!" 𝑠" 𝛼"#
𝛼!# 𝛼"# 𝑠#

.,                                                                  (b4) 56 

𝐱(𝑛) ≜ [𝑥(𝑛) 𝑦(𝑛) 𝑧(𝑛)]+,                                                         (b5) 57 

where (∙)+denotes transpose. Then equation (a1) can be expressed in matrix format as 58 

𝐱(𝑛) = 𝐓𝐦(𝑛) + 𝐛 + 𝐞(𝑛), 𝑛 = 1,2, … ,𝑁.                                           (b6) 59 

Also define 60 

𝛉 ≜ [𝑏! 𝑏" 𝑏# 𝑠! 𝑠" 𝑠# 𝛼!" 𝛼!# 𝛼"#]+                                     (b7) 61 

as the vector for all nine unknown parameters. Here, we assume 𝐦(𝑛) is known to simplify the 62 

derivation. 63 

Let  64 

𝛍(𝑛) ≜ 𝐓𝐦(𝑛) + 𝐛 .                                                                    (b8) 65 

It is easy to verify that derivatives of  𝛍(𝑛) with respect to each unknown parameter can be 66 

expressed as  67 

,𝛍(()
,0"

= [1 0 0]+,                                                                     (b9) 68 

,𝛍(()
,0#

= [0 1 0]+,                                                                   (b10) 69 

,𝛍(()
,0$

= [0 0 1]+ ,                                                                  (b11) 70 

,𝛍(()
,1"

= [𝑚!(𝑛) 0 0]+,                                                           (b12) 71 

,𝛍(()
,1#

= [0 𝑚"(𝑛) 0]+,                                                           (b13) 72 
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,𝛍(()
,1$

= [0 0 𝑚#(𝑛)]+,                                                           (b14) 73 

,𝛍(()
,2"#

= [𝑚"(𝑛) 𝑚!(𝑛) 0]+,                                                   (b15) 74 

,𝛍(()
,2"$

= [𝑚#(𝑛) 0 𝑚!(𝑛)]+,                                                   (b16) 75 

,𝛍(()
,2#$

= [0 𝑚#(𝑛) 𝑚"(𝑛)]+.                                                   (b17) 76 

Define 77 

𝐅(𝑛) ≜ W
,𝛍(()
,0"

,𝛍(()
,0#

,𝛍(()
,0$

,𝛍(()
,1"

,𝛍(()
,1#

,𝛍(()
,1$

,𝛍(()
,2"#

,𝛍(()
,2"$

,𝛍(()
,2#$

X  ,                 (b18) 78 

which can be written as  79 

𝐅(𝑛) = %
1
0
0

0
1
0

0
0
1

𝑚!(𝑛)
0
0

0
𝑚"(𝑛)
0

0
0

𝑚#(𝑛)

𝑚"(𝑛)
𝑚!(𝑛)
0

𝑚#(𝑛)
0

𝑚!(𝑛)

0
𝑚#(𝑛)
𝑚"(𝑛)

)  .               (b19) 80 

The CRBs are a set of inequalities stating that, provided the estimates are unbiased, the 81 

covariance matrix of the estimated parameter vector is lower bounded by the inversed Fisher 82 

information matrix, as shown in reference (17)  83 

[𝐹𝐼𝑀]34 =
*
$
𝑁 ∙ tr[𝐐5*𝐐36𝐐5*𝐐36] + ∑ I𝛍(𝑛)36+𝐐5*𝛍(𝑛)46 J'

()*  ,                       (b20) 84 

where 𝐗36 denotes the derivative of 𝐗 with respect to the ith unknown parameter and 𝐐 denotes 85 

the noise covariance matrix. Since 𝐐 does not depend on any parameter in 𝛉, the CRB can be 86 

derived based on the second term of the right side of equation (b20) as  87 

CRB(𝛉) = [∑ (𝐅(𝑛)+'
()* 𝐐5*𝐅(𝑛))]5*.                                        (b21) 88 

Assuming 𝐐 = 𝜎$𝐈 with 𝐈 being 3x3 identity matrix, the CRBs can be simplified as  89 

CRB(𝛉) = 𝜎$[∑ (𝐅(𝑛)+'
()* 𝐅(𝑛))]5*,                                          (b22) 90 

which can easily be numerically evaluated. 91 

C. Estimation Method for Pitch and Roll Misalignment Angles 92 

Assume the top surface of the turntable aligns accurately with the x-y plane of the local level 93 

frame. However, mounting the smartphone on the table can introduce a misalignment between 94 

the magnetometer body frame and the local level frame, characterized by small values of pitch 95 
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(𝜃) and roll (𝜑) angles. Then, the transformation of the measured magnetic field from the body 96 

frame to the local level frame at each station can be expressed below, according to reference (18) 97 

%
𝑚!
7 (𝑘)

𝑚"
7 (𝑘)

𝑚#
7 (𝑘)

) = +
c(𝜃) 0 s(𝜃)
0 1 0

−s(𝜃) 0 c(𝜃)
. +
1 0 0
0 c(𝜑) −s(𝜑)
0 s(𝜑) c(𝜑)

. ⋅ %
𝑚!(𝑘)
𝑚"(𝑘)
𝑚#(𝑘)

) ,			𝑘 = 1,2, … , 𝐾            (c1) 98 

where c(∙) = cos	(∙)  and s(∙) = sin	(∙) ; 𝑚!
7 (𝑘),𝑚"

7 (𝑘) , and 𝑚#
7 (𝑘)  denote magnetometer 99 

measurements in the local level frame; 𝐾 is the total number of heading stations. Define the 100 

horizontal component of the estimated magnetic measurements in the local level frame as 101 

𝐻(𝑘) = 	sqrt lm𝑚A!7 (𝑘)n
$
+	m𝑚A"7 (𝑘)n

$
o, 	𝑘 = 1,2, … , 𝐾.                                (c2) 102 

With a valid misalignment compensation, the horizontal component 𝐻(𝑘) of the magnetometer 103 

measurements should be a constant value that is independent of heading stations. Therefore, the 104 

estimates of 𝜃 and 𝜑 can be obtained by minimizing the following cost function.  105 

 𝑓(𝜃, 𝜑) ≜ max
*898:

t𝐻(𝑘)u − min
*898:

t𝐻(𝑘)u.	                                            (c3) 106 

In this work, instead of estimating pitch and roll misalignment parameters simultaneously, we used 107 

the 1D golden-section search method to optimize 𝜃 and 𝜑 separately (14). We repeated this 108 

process iteratively until results converged.   109 


