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a barrier to achieving higher levels of automation in this field. 
Although there are not any specific studies regarding human 
error in misclassification of nebulae, human labeling of data 
is often prone to mistakes as demonstrated in medicine (3).

 In addition, comprehensive and accurately labeled 
datasets are fundamental for training these artificial 
intelligence models effectively. However, the scarcity of such 
extensive and precise data specifically tailored for nebulae 
poses a challenge.

Classifying nebulae helps scientists gain a clearer 
understanding of their chemical composition, contributing to 
a more comprehensive knowledge of the materials present in 
the original star. (4). The presence of certain elements such 
as carbon or nitrogen can reveal details about the processes 
within a star during its lifetime (4). In addition, the makeup of a 
nebula can contain critical information about potential life on 
other planets (5). Recently, the Orion Nebula helped scientists 
learn that the abundance and distribution of phosphorus (an 
essential element for life) are more random than we thought 
(5).  

Each nebula possesses unique visual attributes that permit 
classification into five main categories: planetary, supernova 
remnants, emission, reflection, and dark (6). The variations 
in these visual characteristics stem from the diverse types of 
gases released by the expiring star, leading to distinct light 
emissions in each nebula category (6). Emission nebulae, 
such as Orion, are formed of ionized gases emitting light 
of notably red/pink tints, with high-temperature gas clouds 
ranging from 100-10,000 solar masses and temperatures up 
to 20,000 K (6). Supernova remnants, expanding ionized gas 
shells, are left behind after the dramatic end of a massive star 
(6). Reflection nebulae, with blue/gray colors from Rayleigh 
scattering, do not create their own light but reflect light from 
nearby stars, bright enough to illuminate the surrounding 
dust (6). Dark nebulae are interstellar clouds with high dust 
concentrations, often present in star-rich regions (6). Made of 
hydrogen molecules, water, and carbon dust, these nebulae 
are dense enough to obscure visible wavelengths of light from 
objects behind them (6). These nebulae are characterized by 
their irregular formations and temperature range from 10-
100 Kelvin (6). Planetary nebulae, created when a star blows 
off its outer layers, are often in a ring or bubble shape (6). 
Consisting of hydrogen, helium, and oxygen, these nebulae 
are observed in more distant galaxies, yielding valuable 
information about their chemical abundances and the sun’s 
life (6).

Neural networks are a crucial component of the 
research due to their ability to discern intricate patterns and 
relationships within complex datasets (7). Their use allows 
for the automated recognition of nuanced characteristics and 
variations in nebulae, aiding in more precise and efficient 
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SUMMARY
There are believed to be ~20,000 nebulae in the 
Milky Way Galaxy. However, humans have only 
cataloged ~1,800 of them even though we have 
gathered 1.3 million nebula images. Resources like 
the Hubble telescope can automatically explore 
space, discover new artifacts, and capture new 
images. Still, their classification is a human skill, 
which ultimately is interminable and subject to 
human error. Classification is important as it helps 
scientists understand the chemical composition of 
a nebula which in turn helps them understand the 
material of the original star. Our research on nebulae 
classification aims to make the process of classifying 
new nebulae faster and more accurate using a hybrid 
of deep learning and machine learning techniques. 
Our hypothesis is that the application of machine 
learning and deep learning methodologies effectively 
classifies nebulae based on images. Using a dataset 
primarily of images from the European Space Agency, 
we experimented with a range of artificial intelligence 
techniques such as featurization and color conversion 
and then determined the deep learning network/
machine learning algorithms that produced the best 
results. The main conclusions reached from our 
research were that (a) the artificial intelligence (AI) 
was not dependent on color to classify nebulae, (b) 
dropping specific categories increased accuracy, and 
(c) featurization is the most effective technique to 
classify nebulae accurately. Automated classification 
of nebulae will help us discover, identify, and classify 
these marvels much faster and more accurately to 
expand our understanding of nebulae. 

INTRODUCTION 
For much of history, humans have marveled at astronomical 

bodies in the night sky. The universe is a vast mystery about 
which we still know little, but we continue to learn more about 
it everyday thanks to new and more advanced technologies. 
Since the Hubble telescope mission started in 1990, over 1.5 
million observations have been made (1). In addition, there are 
believed to be around 20,000 nebulae in the Milky Way Galaxy, 
but only 1,800 of them have been cataloged (2). Telescopic 
resources like the Hubble telescope can automatically 
explore different areas of space and discover new artifacts 
including nebulae. Nevertheless, the nebulae categorization 
process remains a human endeavor, inherently susceptible to 
the potential for human inaccuracies. Classification remains 
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classification. They are a series of algorithms that attempt to 
recognize underlying relationships in a dataset by mimicking 
how the brain works (7). Some parts of neural networks 
include neurons, hidden layers, output layers, and synapses 
(7). Neurons take the output one or more layers behind of 
it and apply a weight to this input (8). Hidden layers are 
between input and output layers, where neurons take in a set 
of weighted inputs and produce an output (8). The output layer 
is the last layer of neurons that makes the output (8). Lastly, 
synapses connect neurons and layers in a neural network, 
similar to how synapses work in our brains (8). 

For nebulae, prior research is limited to the classification of 
specific nebula types. For instance, a planetary classification 
model using a Bayesian neural network has been created (9). 
Planetary nebulae have been classified using tree modeling 
and deep transfer learning (10-11). Our experiments deal with 
a specific astronomical body (nebulae), while most previously 
held research is broader. Focusing on nebulae specifically 
allow for a more detailed and comprehensive analysis of these 
intricate celestial bodies, aiming to deepen our understanding 
of their unique characteristics and potentially contribute 
specialized insights to the field of astronomy.

The goal of our research is to make the process of classifying 
nebulae more efficient and accurate. Our hypothesis is that 
machine learning and deep learning techniques can effectively 
classify nebulae from images. To evaluate our hypothesis, we 
assembled a dataset consisting of five categories of nebulae 
and evaluated a mix of deep learning and machine learning 
with featurization techniques and color conversion, using 
accuracy as the metric of effectiveness. By utilizing advanced 
featurization methods and a diverse dataset, we explored 
how these methods can enhance the accuracy and efficiency 
of nebulae categorization. Initial findings suggested that color 
independence, selective category omission, and featurization 
considerably improve classification accuracy. The subsequent 
sections will delve into a detailed analysis of the methodology 
and results, focusing on the exploration and assessment 
of machine learning and deep learning techniques for the 
classification of nebulae, providing a clearer understanding of 
their efficacy and potential implications.

RESULTS
We first investigated the effect of color conversion to black 

and white on accuracy of the neural networks and algorithms. 
Accuracy is the number of correctly predicted images divided 
by the total number of images. These accuracies are after 
tuning the hyperparameters with all five categories; ResNet50 
improved its accuracy with the gray images (+0.71%), 
MobileNetV2’s accuracy decreased (-3.94%), and the custom-
built network’s accuracy improved (+4.05%) (Figure 1). MLP 
Classifier’s accuracy improved with gray images (+1.36%), 
Random Forest’s accraucy decreased a little (-3.02%), 
and KNearestNeighbours improved its accuracy (+3.25%) 
(Figure 2). Since the range of accuracy is a hundred, these 
accuracy differences are relatively small. These were the 
best accuracies after manipulating hyperparameters. The 
experiment that converted images to black and white was able 

Figure 1: Deep Learning Network Color Conversion Results.
Accuracy of ResNet, MobileNet, and CustomBuilt Network for 
colored images v.s. black and white images. Blue indicates colored 
images, Red indicates the black and white images. The accuracy 
is displayed above each bar. Color conversion experiment is shown 
where we analyzed the effect of changing the color of the nebula 
images for the deep learning networks. 

Figure 2: Machine Learning Algorithms Color Conversion 
Results. Accuracy of MLP Classifier, RandomForest, and 
KNearestNeighbours for colored images v.s. black and white images. 
Blue indicates colored images, Red indicates the black and white 
images. The accuracy is displayed above each bar. Color conversion 
experiment is shown where we analyzed the effect of changing the 
color of the nebula images for the machine learning networks. 

Figure 3: Machine learning algorithms v.s. deep learning 
networks performance. Accuracy of MLP Classifier, RandomForest, 
and KNearestNeighbours, ResNet, MobileNet, CustomBuilt Net. 
Red indicates a deep learning network (no featurization) and blue 
indicates a machine learning algorithm (featurization applied). The 
accuracy of each model is displayed above the bar. The featurization 
experiment is shown where we analyzed the effect of featurization on 
images, allowing us to use machine learning algorithms. All models 
were trained on colored images.
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to show us that the artificial intelligence was not dependent 
on the color of the images to classify a nebula.

Next, we featurized the images, which is a technique 
utilized to use machine learning algorithms, by converting 
the images into vectors. We compared the accuracies of the 
machine learning algorithms and deep learning networks after 
removing the poor performing categories, which is elaborated 
upon in greater detail in the subsequent section (Figure 3).  
We observed improvement in accuracy with featurization. 
The best accuracy in the neural network was 78%, and after 
featurization with machine learning algorithms, it increased 
significantly (+5).

Finally, we used a confusion matrix to analyze the 
specifications of performance. A confusion matrix, a visual 
representation of the performance of a classification mode, 
provides a comprehensive picture of how well the model 

has predicted different classes within a dataset. Upon close 
inspection, we noticed the confusion matrix was beneficial 
as it showed us the first and second rows seem to be 
random guessing (Figure 4). The rows represent the valid 
values, while the columns represent the predicted values. 
The dark category is the 1st row. We observed the artificial 
intelligence only predicted that it was a dark nebula 6 out of 
16 times. Similarly in the reflection category (second row), 
we noticed our artificial intelligence model only predicted 
a reflection nebula 5 out of 13. The model only predicted 
about 37% for these two categories correctly. Knowing this, 
we dropped the two randomly guessing categories, and 
models rerun without them to see how the accuracy would 
be affected. In the machine learning models, MLP Classifier 
and Random Forest’s accuacies improved by 30%, while 
KNearestNeighbours’ accuracy improved by 22% (Figure 5). 
In the deep learning networks, ResNet’s accuracy improved 
by 25%, MobileNet’s accuracy increased by 18%, and the 
custom-built network’s accuracy improved by 15% (Figure 5). 

DISCUSSION
Our study aimed to expedite and enhance the accuracy of 

nebulae classification through the fusion of machine learning 
and deep learning techniques applied to image data. The 
central question of our research revolved around whether a 
hybrid AI approach could efficiently categorize nebulae based 
on images and whether specific methodologies within this 
hybrid model would notably impact classification accuracy. 
Utilizing a dataset primarily sourced from the European Space 
Agency, we conducted a series of experiments, implementing 
various artificial intelligence techniques, such as featurization 
and color conversion, to discern the optimal approach 
for accurate classification. The overarching conclusions 
drawn from this research are twofold. Firstly, the successful 
application of machine learning and deep learning techniques 
in nebulae classification substantiates the potential of AI in 
swiftly and accurately categorizing celestial objects, thereby 
expediting scientific exploration in astronomy. Secondly, 
the discovered insights regarding color independence, 
category selection, and the effectiveness of featurization 
not only optimize the current classification process but also 
lay a foundation for future studies to refine and advance AI 
methodologies in classifying nebulae.

The machine learning and deep learning techniques 
utilized in our research reached the best accuracy of predicting 
nebula of 82.97%, showing that it is possible to effectively 
classify nebulae from images with artificial intelligence, 
confirming our hypothesis. Beyond this, the results revealed 
several observations.

The first conclusion from our research that can be made 
is that artificial intelligence is not dependent on the color of 
the nebula images to classify it. Our research on the different 
nebulae revealed that some nebulae had a certain luminosity 
or color associated with them. The research investigated 
whether the artificial intelligence was only dependent on 
color to classify or whether it had identified other features to 
distinguished. The validation accuracies for the black/white 
and colored datasets were about the same. The black and 
white experiment was not an effective technique to increase 
the effectiveness of the artificial intelligence. Secondly, we 
learned that dropping specific categories was beneficial 
overall. The artificial intelligence was not able to classify the 

Figure 4: Confusion Matrix. Confusion matrix of 
KNeighboursClassifier of featurized, colored images. D stands for 
dark nebulae, R for reflection nebulae, E for emission nebulae, SR for 
supernova remnants, and P for planetary nebulae. The percentage 
for each box indicates the percent of times the model predicted the 
indicated category was incorrect.

Figure 5: Dropping categories results. Accuracy of MLP Classifier, 
RandomForest, and KNearestNeighbours, ResNet, MobileNet, 
CustomBuilt Net. Blue indicates the model was trained with all 5 
categories while red indicates the model was trained after dropping 
the dark and reflection categories). The accuracy of each model 
is displayed above the bar. The dropping categories experiment is 
shown where we analyzed the effect of dropping the two problematic 
categories. All models were trained on colored images.
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dark and reflection nebulae. This may be because there were 
few features that distinguished these nebulae. Reflection 
and dark nebulae may also require more information than 
a picture to classify them, such as wavelengths of the light 
coming out of them. 

Lastly, the main observation that can be reached from 
the research is that the featurization of images is the most 
effective technique at improving performance. The assertion 
that image featurization stands as the most effective 
technique stems from its capacity to capture intricate visual 
patterns and convert them into a format understandable 
to machine learning algorithms. It's the extraction of these 
complex visual elements that facilitates a more robust and 
accurate classification, offering a plausible explanation for 
why featurization emerged as the most effective technique 
in our research. The technique of using featurization and 
dropping the two problematic categories, dark and reflection, 
led to a maximum accuracy of a 82.97% using MLP Classifier. 
The metric table includes the validation accuracy, precision, 
recall, and F1 (combination of precision and recall) of 
many different combinations of dropping categories and 
featurization (Table 1).

However, our research does not come without limitations. 
One significant limitation is the reliance on enhanced images 
for analysis, as opposed to utilizing raw images captured 
directly by telescopes. These telescopes possess the 
capability to capture light beyond the visible spectrum, which 
may contain valuable information for nebula classification. By 
using processed images, we may limit the richness of data 
available to our tool. This limitation highlights the importance 
of further exploration into the integration of raw telescope 
images into our classification framework, potentially enhancing 
the power and accuracy of our tool. Another limitation is the 
decision to drop two specific categories during model training 

to improve overall performance. While this approach led to 
higher accuracy rates (from ~40% to ~80%), it also means 
that our tool cannot be applied universally to the complete set 
of nebulae images. This limitation necessitates consideration 
of strategies for incorporating these excluded categories into 
future iterations of our model.

Our research holds promising implications in the vast field 
of astronomy, especially in the context of the evolution of 
telescopic instrumentation. The Hubble telescope has been 
reported to decay by mid-2030 (12). Our study, focused on 
aiding the classification of nebulae through a hybrid of deep 
learning and machine learning techniques, offers a versatile 
framework that is inherently adaptable. It represents a step 
toward promoting further research in the application of 
machine learning and deep learning in nebulae classification. 
By incorporating these classification techniques into the next 
generation of astronomical endeavors, we help to bridge 
the gap between the capabilities of existing instruments and 
the rapid discovery, identification, and classification of the 
hundreds of marvelous nebulae waiting to be discovered. 

Several studies have explored the application of artificial 
intelligence in space object classification from galaxies 
to stars to planets. The work of Dang Pham demonstrated 
the use of machine learning in color classification of Earth-
like planets (13). Similarly, Moonzarin Reza utilized neural 
networks for galaxy morphology classification showing the 
potential of automated techniques in handling extensive 
astronomical datasets (14). 

Drawing parallels to existing research, our research aligns 
with the trend of astronomical research leveraging artificial 
intelligence for efficient and accurate classification. The 
successful application of machine learning and deep learning 
techniques in nebula classification confirms the potential of 
artificial intelligence in categorizing celestial objects. Further 
engagement with related works and methodologies with 
foster further advancements in astronomy. 

MATERIALS AND METHODS
Approach

The approach undertaken in the research is depicted 
(Figure 6). First, we collected nebula image data. Next, we 
either featurized the images, converted the images to black 
and white, or directly applied deep learning algorithms. 
After featurizing the photos, machine learning algorithms 
(MLP Classifier, KNearestNeighbours, RandomForest) can 
be used to classify the nebulae. Converting the images to 
black and white was an experiment and afterwards, we 
trained the images using the deep learning neural networks 
or machine learning algorithms. Next, we dropped categories 
as necessary and tuned the hyperparameters. Lastly, we 
observed and evaluated the results by using the testing dataset 
to look at the validation accuracy and confusion matrices, 
tables to show exact performance across categories. 

Data
Data collection was the first step. The data consisted 

of a massive variety of nebulae across the five categories: 
emission, dark, reflection, supernova remnants, and planetary. 
Data was gathered from the European Space Agency (ESA) 
(15). The website consisted of many nebula images taken 
by the Hubble Telescope and documented the nebula type. 
This was insufficient data, so more images were collected 

Table 1: Summary of machine learning and neural networks 
performance. Shows the metrics across dropping category 
experiments (before v.s. after dropping categories) in both machine 
learning algorithms and deep learning networks.
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from Google Images. When collecting Google images, it 
was essential to ensure that it was the correct category by 
checking the source because otherwise, the data would be 
inaccurate. Around 80% of the data was collected from the 
ESA and only 20% from other miscellaneous sources. All 
images were converted to 224 by 224 pixels before training. 

  The frequency table shows about 70-80 images for 
each type of nebula (dark, reflection, emission, planetary, 
supernova remnants), with a total of 376 unique nebula 
images (Table 2). It was critical to have approximately the 
same number of pictures for each category so the artificial 
intelligence would not be biased toward one class. In addition, 
there had to be sufficient images for the artificial intelligence 
to learn about every category. 80% of the data was used for 
training the artificial intelligence, while the remaining 20% 
was used for testing. N-fold cross validation was used using 
sklearn’s StratifiedKFold. 

Color Conversion
Raw nebula images are typically originally black and white 

and then color is added for visual effects. We converted the 
images to black and white to determine the effect on the AI’s 
effectiveness in classifying nebulae using the python PIL 
library.

Featurization
Featurizing images involves extracting essential visual 

patterns or characteristics from the images, which are 
transformed into a high-dimensional representation. In 
our study, this process utilized a pre-trained MobileNetV2 
model, which converts the images into a 1280-dimensional 
vector or image representation. These 'features' extracted 
from the images could encompass complex visual elements, 
such as edges, textures, shapes, or higher-level concepts 
within the image. These features, when translated into a 
numerical format, allow us to apply various machine learning 
algorithms, enabling the computer to 'understand' and 
classify images based on these extracted visual patterns. 
Featurization was utilized to effectively use relatively small 
sets of labeled images that would not be sufficient to train 
a deep network from scratch (16). The featurization took a 
base model (MobileNetV2) that was previously trained using 
ImageNet and then added the global average pooling layer. 
Unlike ResNet50 and MobileNetV2, however, the softmax 
was not added. The featurization took the output of the 
MobileNetV2 (2400 values), and instead of converting it 
into the five categories of prediction, it took the intermediate 
values and used that as a feature vector for the machine 
learning algorithms. 

Dropping Categories
A confusion matrix is a specific table layout that visualizes 

the performance of a machine learning classification model 
by showcasing the model's predictions and their alignment 
with the actual data. It organizes and displays the model's 
classification outcomes, detailing the number of correct 
and incorrect predictions for each class within a dataset. 
Essentially, it provides insight into the model's accuracy 
by showing the relationship between predicted and actual 
classifications, enabling a detailed evaluation of the model's 
performance. In the context of our research, the confusion 
matrix serves as a crucial tool to assess the accuracy and 
effectiveness of our classification methods for different types Table 2: Number of images in each category of nebula.

Figure 6: Flowchart of the research methodology. The first was collecting images from the ESA Hubble Telescope. We converted the 
images to black and white. We then applied featurization for machine learning algorithms. We trained the deep learning models and the 
machine learning algorithms. We dropped categories and tuned hyperparameters and rerun the deep learning networks and machine learning 
algorithms. Lastly, we observed and evaluated the results.
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of nebulae, helping us analyze and refine the performance of 
our machine learning models in categorizing these celestial 
objects accurately.

The decision to drop a category was determined by 
analyzing that particular category’s confusion matrix row. 
Checking the row and how often it was incorrectly predicted as 
another category indicated whether the model was randomly 
guessing for that category. Algorithms and neural networks 
were rerun after dropping categories.  The decision to drop 
a specific category was based on a comprehensive analysis 
of that category's confusion matrix row obtained during 
the evaluation of the model's predictions. Upon observing 
frequent incorrect predictions for that category, indicated by 
a high number of misclassifications as another category, it 
suggested potential ambiguity or randomness in the model's 
predictions for that particular class. As a result, to refine the 
model's performance and accuracy, we made the decision to 
exclude that specific category from further analysis and re-
ran the algorithms and neural networks.

Algorithms
There are many different deep learning networks, but we 

focused on MobileNetV2, ResNet50, and a custom-built one. 
These specific neural networks, MobileNetV2 and ResNet50, 
were chosen for their established performance in image 
classification tasks and their balance between accuracy and 
computational efficiency, while a custom-built network was 
developed to address the specific complexities of the nebulae 
dataset. MobileNetV2 is a convolutional neural network 
that is 53 layers deep (17). MobileNetV2 is unique because 
it has very little computation power to run or apply transfer 
learning. ResNet50 50 V2 (residual network) is a specific 
neural network that uses 50-layer and significantly enhances 
the performance of neural networks with more layers (17) 
The custom-built network is different from ResNet50 and 
MobileNetV2 as there is no pre-trained model, to begin with. 
The custom neural network was a sequential model consisting 
of three convolutional layers followed by a single dense layer. 
The final layer of the network was softmax with five neurons, 
one for each category. 

MLP Classifier (Multi-layer Perceptron classifier) is a 
machine learning algorithm that relies on an underlying 
fully connected Neural Network to perform the task of 
classification (18). It is notably more straightforward than the 
neural networks described above. KNearestNeighbours is a 
classification technique that takes the k neighbors data points 
to determine the category. Lastly, RandomForest uses many 
decision trees to predict a class. 

We used TensorFlow and Scikit Learn run in Google 
Collab. TensorFlow is a software library used typically 
for deep learning algorithms such as ResNet50 and 
MobileNetV2 (19). The use of TensorFlow in the code is to 
create a plethora of deep learning neural networks to classify 
nebulae. Scikit Learn is another valuable library for machine 
learning algorithms (20). The use of Scikit Learn in the 
code is to run various machine learning algorithms after the 
featurization of the images to classify nebulae. Code used 
for analysis is available on GitHub (21). In addition, some 
machine learning algorithms (Multilayer Perceptron Classifier, 
KNearestNeighbours, RandomForest) were run in Amazon 
Web Services (AWS) as well. 

Hyperparameters
There are unique hyperparameters for all the different 

neural networks and algorithms. The primary hyperparameters 
we manipulated in the deep learning networks are the batch 
size, learning rate, and epochs. The batch size was kept 
around 30-40 images per batch, the learning rate was usually 
around 0.0001 to 0.007, and the epochs were around 40-50 
(a full cycle of dataset in units of batch size).

For MLP classifiers, the primary hyperparameters were 
the hidden layers and the learning rate. The hidden layers 
were around 150 to 225, while the learning rate spanned 
from 0.0001-0.0005. In KNearestNeighbours, the only 
hyperparameter used is k (the number of nearest neighbors 
to use for making predictions). The range for k we used was 
around 16 to 35 neighbors. Lastly, RandomForest takes in the 
number of trees and an optional hyperparameter, maximum 
depth. The num_trees spanned from around 20 to 80 trees. 
Playing around with the hyperparameters helped me achieve 
the best possible results. The hyperparameter shows the best 
hyperparameters for the colored images and the featurized 
colored images (Table 3). 

Tuning and Metrics
The confusion matrix helps determine the effectiveness 

of an algorithm or neural network. The confusion matrix of an 
algorithm can tell us information about how it is performing. 
Looking at the rows helps identify where an algorithm may 
be predicting for a particular category. This can help us 
determine whether to drop a category or not.  

Another method is to adjust hyperparameters to achieve 
the best validation accuracy. There are many different 
hyperparameters that depend on the neural network/
algorithm used. Previous hyperparameters were kept track of 
to do this most effectively.

The metric in the research is validation accuracy. It’s a 
percentage indicating how well artificial intelligence could 
classify new images. We also noted the precision, recall, and 
F1 scores of the performance. It’s also helpful to distinguish 
which categories are performing well.
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