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increase in these neurotransmitters then prompts the 
formation of oxygen radicals and a reduction of the antioxidant 
capacity of the lungs. These factors cause point mutations of 
the DNA which alter lung growth and function (5, 6). Especially 
when a single cell undergoes multiple mutations, they can 
lead to nonfunctional tumor-suppressor genes and cancer 
(7). Moreover, the general use of nicotine “hijacks” the brain’s 
reward system and desensitizes the nucleus accumbens (the 
brain tissue involved in reward and pleasure), decreasing 
one’s control over dangerous behavior (8).
 Genetic factors also play a role in the development of 
nicotine dependency (9). The expression level of certain 
genes can contribute to becoming addicted and even assist 
medical professionals in determining the most effective 
treatment method (10). Prior studies surrounding the use of 
nicotine products focused on identifying genes of interest 
with respect to nicotine usage. Such studies tended to focus 
on identifying genes related to nicotine addiction rather than 
deriving a method or function to identify nicotine usage or 
potential risk for nicotine addiction in patients. For example, 
SERPINA1, CHRNB3, CHRNA6, CHRNA5, CHRNA3, 
CHRNB4, DNMT3B, NOL4L, and CHRNA4 were all found to 
be associated with smokers via a genome-wide association 
study (GWAS) in healthy patients (11). These genes are 
largely responsible for inhibition of relevant enzymes 
related to nicotinic acetylcholine receptor subunits. Genetic 
variations of SERPINA1 have been found to be associated 
with the pathogenesis of chronic obstructive pulmonary 
disease (COPD), to which smoking is a known contributor 
(12). Additionally, mutations in CHRNB3, CHRNA6, CHRNA5, 
CHRNA3, CHRNB4, DNMT3B, NOL4L, and CHRNA4 have 
all been found to influence COPD (13). However, while 
GWAS studies identify correlations, they have been criticized 
because such correlations often lack direct biological 
relevance to disease (14). It remains unclear whether these 
genetic associations with smoking also extend to the level of 
mRNA expression, which has a more direct effect on protein 
levels.
 We hypothesized that expression of genes commonly 
associated with smoking status would have variable 
expression between smokers and non-smokers. To address 
this question, we analyzed RNA sequencing (RNA-seq) data 
from studies of gene expression in the nucleus accumbens 
and the lungs of smokers and non-smokers. In this study, the 
random forest classifier trained on lung tissue data showed 
the most robust results, with area under curve (AUC) values 
consistently between 0.82 and 0.93. Based on this model, we 
determined KCNJ3 and TXLNGY as two candidate markers 
of smoking status.

Predicting smoking status based on RNA sequencing 
data

SUMMARY
Given an association between nicotine addiction and 
gene expression, we hypothesized that expression 
of genes commonly associated with smoking status 
would have variable expression between smokers and 
non-smokers. To test whether gene expression varies 
between smokers and non-smokers, we analyzed two 
publicly-available datasets that profiled RNA gene 
expression from brain (nucleus accumbens) and lung 
tissue taken from patients identified as smokers or 
non-smokers. We discovered statistically significant 
differences in expression of dozens of genes between 
smokers and non-smokers. To test whether gene 
expression can be used to predict whether a patient 
is a smoker or non-smoker, we used gene expression 
as the training data for a logistic regression or 
random forest classification model. The random 
forest classifier trained on lung tissue data showed 
the most robust results, with area under curve (AUC) 
values consistently between 0.82 and 0.93. Both 
models trained on nucleus accumbens data had 
poorer performance, with AUC values consistently 
between 0.65 and 0.7 when using random forest. 
These results suggest gene expression can be used 
to predict smoking status using traditional machine 
learning models. Additionally, based on our random 
forest model, we proposed KCNJ3 and TXLNGY as 
two candidate markers of smoking status. These 
findings, coupled with other genes identified in this 
study, present promising avenues for advancing 
applications related to the genetic foundation of 
smoking-related characteristics.

INTRODUCTION
 Nicotine addiction is an issue gaining increasing attention 
due to the introduction of electronic cigarettes and their 
influence on adolescents (1). While electronic cigarettes have 
far less than the 7000+ harmful chemicals present in traditional 
cigarette smoke, advertisements for these devices primarily 
center around a younger audience, introducing nicotine 
usage beyond just older generations (2,3). Users of electronic 
cigarettes also often still smoke traditional cigarettes: a 2014 
study found that the percentage of e-cigarette users who 
continued to smoke traditional cigarettes was 93% in the 
United States, 83% in France, and 60% in the United Kingdom 
(4).  
 Nicotine primarily targets the nicotinic acetylcholine 
receptors, or nAChRs, in the brain thereby stimulating the 
release of neurotransmitters, primarily dopamine. The 
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RESULTS
 To test whether gene expression varies between smokers 
and non-smokers, we analyzed two publicly-available 
datasets that profiled RNA gene expression from nucleus 
accumbens (brain) and lung tissue taken from patients 
identified as smokers or non-smokers (23,24). First, we tested 
whether genes known to be associated with smoking status 
had different levels of expression across smokers and non-
smokers. We found that expression of one of the primary 
genetic indicators for nicotine dependence, SERPINA1, 
showed a clear difference between the distribution of case 
and control points in both nucleus accumbens and lung 
samples. We found that non-smokers had a higher average 
expression of SERPINA1 than smokers (p = 0.01, Student’s 
t-test), suggesting that the regulation of SERPINA1 may be 
an indicator of a patient’s smoking status. However, other 
smoking-associated genes, such as NOL4L, did not show 
significant differential expression in either dataset (p = 0.3, 
Student’s t-test) (Figure 1).
 We hypothesized that we could predict smoking status 
based on the genes expressed differentially between smokers 
and non-smokers. To find genes with large expression 
differences, we calculated the fold change gene expression 
for all genes in each dataset (Tables 1 and 2). A fold change 
value of 1 indicates no difference between the two groups, 
while a value greater than 1 indicates an increase in the 
variable in the experimental group. We found significantly 
different genes in the lung tissue dataset compared to 
the genes found from the nucleus accumbens dataset, in 
particular, the presence of SERPINA1.
 A GLMNET logistic model was then generated, which 
resulted in a consistent AUC output of 0.61-0.70 (Figure 
2). Glmnet is a package that fits generalized linear models 

Figure 1: Expression of SERPINA1 and NOL4L in smokers, non-smokers, and patients with indeterminant smoking status from 
the nucleus accumbens dataset. Log10-transformed transcripts per million (TPM) gene expression across each of the three groups. TPM 
values were calculated from raw quantified RNA-seq values. N=50 case (smoker) samples, N=171 control (non-smoker), N=2 indeterminant 
smoking status. p=0.01 between case and control (student’s t-test) SERPINA1, p=0.3 between case and control (student’s t-test) NOL4L. 

Table 1: Top five genes ranked descending by fold change values 
in nucleus accumbens dataset. Log10-transformed transcripts 
per million (TPM) gene expression across each of the three groups. 
N=50 case (smoker) samples, N=171 control (non-smoker), N=2 
indeterminant smoking status. Fold change>1 indicates differential 
expression between smoker and non-smoker patients.

Table 2. Top 5 genes ranked descending by fold change value 
in lung tissue dataset. N=39 case (smoker) samples, N=34 control 
(non-smoker), N=4 indeterminant smoking status.
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based on maximum likelihood. The AUC output evaluates 
how well a logistic regression model classifies positive 
and negative outcomes, ranging from 0.5 to 1, the larger 
the better. In this case, an output between 0.61 and 0.70 
indicates a low ability to discriminate between smoker and 
nonsmoker patients in the dataset. We created a confusion 
matrix using the top 50 highest fold change genes (data not 
shown). Variable importance was then found, depicting the 
genes that were most significant in the prediction. However, in 
an attempt to provide a more accurate prediction, rather than 
using GLMNET logistic regression as a classifier, we used 
a random forest classifier as the predictor for both datasets. 
The random forest classifier is robust to outliers because they 
get averaged out by the aggregation of multiple tree outputs. 
Moreover, the nucleus accumbens dataset can be considered 
an imbalanced dataset, where the dataset is not half smokers 
and half non-smokers but has many more data points from 
the non-smoker class. Random forest classification is a 
robust algorithm that can handle imbalanced datasets, where 
one class is much rarer than the others. The result from the 
random forest model was a similar AUC of 0.65-0.70 (Figure 
3).
 Compared to the nucleus accumbens dataset, there 
was a clear increase in accuracy, and the predictions were 
not skewed towards either smoking status. Using RNA-seq 
from the lung sample dataset as input, the GLMNET model 
achieved AUC values consistently between 0.79 and 0.92 
(Figure 4). The random forest classifier achieved similar 
levels of accuracy and AUC values, roughly 0.82 to 0.93 
(Figure 5). These results suggest that the lung tissue dataset 
is a much better predictor of nicotine usage compared to the 
nucleus accumbens dataset.
 Interestingly, the two most significant genes in the GLMNET 
and random forest models of the lung tissue dataset, KCNJ3 
and TXLNGY respectively, play very different functional roles 
but were both assigned very high significance.

DISCUSSION
 In this study, we sought to determine whether genes known 
to be associated with smoking status also had differential 
gene expression levels across smokers and non-smokers. 
We postulated that normalized gene expression data could 
be used to predict whether someone is a smoker or non-
smoker. To make this prediction, we used logistic regression 
and random forest models, which both can be trained on 
large data with modest computational resources. When used 
on the nucleus accumbens dataset, the output resulted in an 
AUC between 0.61-0.70 between the two models and did not 
lead to more interpretable results. Meanwhile, both models of 
the lung tissue dataset performed relatively well, the random 
forest model performed marginally better. Random forest 
does not assume a linear relationship between predictors 
and the response. This is especially beneficial when dealing 
with high-dimensional data, such as that of this dataset, in 
which the relationships might not be linear. Moreover, random 
forest’s capability to handle irrelevant or redundant features 
without significant drops in efficiency allows much better 
output for higher-dimensional scenarios where many features 
might not be relevant to the outcome.
 Expanding our analysis, it is important to underscore the 
context of accurate predictions within this project. Notably, a 
significant proportion of accurate predictions originated from 
non-smoker individuals. This observation casts doubt on the 
feasibility of accurately determining smoking status based on 
gene expression data from the nucleus accumbens dataset. 
However, we acknowledge that other studies have established 
a strong link between gene expression and smoking status 
with a high degree of accuracy (15).
 In the lung tissue dataset, we found that some genes 
with statistically significant expression differences between 
smokers and non-smokers were absent from the nucleus 
accumbens dataset, such as SERPINA1. This offers a much 
more informative result, as many other genes with similar or 
even higher fold change values may be possible indicators of 

Figure 2: GLMNET prediction model for nucleus accumbens dataset. (a) List of genetic markers ordered by variable importance in 
creating the prediction, (b) plot of AUC for the prediction, and (c) confusion matrix. N=50 case (smoker) samples, N=171 control (non-smoker), 
N=2 indeterminant smoking status. AUC = 0.61-0.70.
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smoking status in patients.
 For the secondary analysis of both datasets, logistic 
regression was used as a means to determine additional 
genes that could be predictors of smoking status. In the 
nucleus accumbens dataset, gene expression is not as strong 
a predictor of smoking status, but the lung tissue dataset 
shows much higher accuracy. One possible reason for this 
discrepancy is the difference between sample sources. The 
first dataset took samples from the nucleus accumbens 
part of the brain while the second took lung tissue samples. 
Nicotine intake is primarily done through smoking e-cigarettes 

or normal cigarettes, with nicotine directly entering the lungs 
and soon after entering the bloodstream as well (16). While 
the alveoli in the lungs are exposed to the full amount of 
nicotine and other carcinogens present in a nicotine product, 
the brain only comes into contact with these chemicals 
through the bloodstream, which must pass through much 
of the body and the blood-brain barrier before reaching the 
brain. This much longer travel path may function to decrease 
the number of absorbed carcinogens that reach the brain 
and lower their impact in comparison to the lungs, resulting 
in more genetic mutations in lung samples compared to brain 

Figure 3: Random forest prediction model for nucleus accumbens dataset. (a) List of genetic markers ordered by variable importance in 
creating the prediction, (b) plot of AUC for the prediction, and (c) confusion matrix. N=50 case (smoker) samples, N=171 control (non-smoker), 
N=2 indeterminant smoking status. AUC = 0.65-0.70.

Figure 4. GLMNET prediction model for lung tissue dataset. (a) List of genetic markers ordered by variable importance in creating 
the prediction, (b) plot of AUC for the prediction, and (c) confusion matrix. N=39 case (smoker) samples, N=34 control (non-smoker), N=4 
indeterminant smoking status. AUC = 0.79-0.92.
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samples. Additionally, as longer time of exposure correlates 
with mutation rate, both the amount of time and number of 
cigarettes smoked will influence gene expression (17). 
 Another reason for this discrepancy could lie in the data 
of the patients in the nucleus accumbens dataset. Compared 
to the lung tissue dataset, it is possible that the nucleus 
accumbens dataset was noisier, and many data points could 
potentially have skewed the result. We indeed found the 
data to be quite noisy, which can make it difficult to interpret 
general correlations simply due to the high variability in 
expression values (Figures 1 and 2). Of course, it is entirely 
possible that there is just more natural variation in gene 
expression in one tissue type compared to another. From the 
lung tissue dataset, smoking status is predicted with a high 
enough accuracy for many of the genes used in the model to 
be considered good indicators, all displaying high differential 
expression between smoker and non-smoker patients. 
 Other factors could also impact a gene’s significance in 
logistic regression. In the case of gene expression, sex is a 
significant factor that was not considered in this study. For 
example, three of the five genes with the highest fold change 
values from the lung tissue dataset are Y-linked genes (PRKY, 
TSIX, and CYORF15B) (18). Despite all being genes found 
to be very relevant in both the GLMNET and random forest 
models, they cannot be fully considered as genes that can 
act as predictors for nicotine addiction in patients. Located 
solely on the Y chromosome, females would not express 
these genes, generating false significance in the prediction 
model. However, these genes may still be important, as a 
previous study has indicated that nicotine dependency may 
be partially sex-based (19). It would be extremely beneficial 
for future research on this topic to consider biological sex 
and possibly create two separate prediction models, which 
would help eliminate some confounding variables and test 
this hypothesis.

 In this paper, we determined KCNJ3 and TXLNGY as 
two candidate markers of smoking status. KCNJ3 encodes 
a G-protein-activated potassium channel that plays an 
important role in regulating cell function in the heart and brain 
(20). These G-protein-gated inwardly rectifying potassium 
(GIRK) channels have been previously found to correlate 
with addiction, epilepsy, and other mental disorders (21). 
CYORF15B, more commonly known as TXLNGY, primarily 
enables syntaxin binding, a biological process that plays a 
role in the growth of neurons during brain development. Other 
genes performing the same function such as SYN1A have 
been found to interact with dopamine transporters, a known 
effect of nicotine in the brain (22). A better understanding 
of the genetic basis of smoking status will aid in identifying 
smoking-associated risk factors and the development of 
smoking cessation drugs.

MATERIALS AND METHODS
Data acquisition and cleaning
 Nucleus accumbens RNA-seq data was retrieved 
from GSE171936 (23). It includes data from 223 deceased 
individuals: 50 current cigarette smokers, 171 nonsmokers, 
and 2 individuals with undetermined smoking status. Lung 
tissue RNA-seq data was retrieved from GSE40419 (24). It 
includes data from 87 lung adenocarcinomas and 77 adjacent 
normal tissues. For the purposes of this study, we only utilized 
the normal tissue samples, as the adenocarcinoma samples 
do not affect smoking status. Among the normal tissue, there 
are 39 smoking patients, 34 non-smoking patients, and 4 
patients of undetermined smoking status. Moreover, in the 
data, the smoking status considered whether a patient was a 
current smoker or a smoker at some point in their life, but the 
groups were assembled as one smoker category for ease of 
processing.

Figure 5. Random forest prediction model for lung tissue dataset. (a) List of genetic markers ordered by variable importance in creating 
the prediction, (b) plot of AUC for the prediction, and (c) confusion matrix. N=39 case (smoker) samples, N=34 control (non-smoker), N=4 
indeterminant smoking status. AUC = 0.82-0.93.
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Preliminary Analysis
 First, R was used to sort through the dataset and identify 
genes that were either overexpressed or underexpressed 
in smokers compared to nonsmokers. ggplot2 was used 
to compare the transcripts per million (TPM) or reads per 
million (RPM) values of smokers and nonsmokers to identify 
significantly differentially expressed genes (using a Student’s 
t-test threshold of p<0.05 for significance).
 An Excel table containing the fold change values (sorted 
in descending order) was created by comparing the case-
median expression and control-median expression of each 
gene (taking median rather than mean expression decreases 
the influence of outliers).

Predictive modeling
 R Studio was utilized to perform the data training and 
modeling. Gene expression values with an absolute log2 
fold change greater than one as input to GLMNET logistic 
regression or random forest classifiers were used to try to 
predict smoking status from gene expression. Training 
data sets were used as input to GLMNET or random forest 
classifiers, using 5-fold cross validation via the ‘caret’ package 
(25). To better visualize the results, a confusion matrix was 
created using its provided function in R.
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