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global temperatures causes the amount of surface water to be 
greatly reduced, as water evaporates quite quickly at higher 

temperatures (3,4). These effects will continue to happen for 
a very long time and will occur at a quicker rate as the effects 
of global warming continue. Leading drought prediction 
models lose their accuracy after 6 weeks, highlighting a need 
to improve existing systems (5). Improved prediction systems 
could save millions of lives and dollars in the long run (2).
 For the majority of drought prediction systems, droughts 
are defined as a moment in time when the amount of water 
entering an ecosystem is less than the amount leaving it, 
typically resulting in a drastic reduction in the size of natural 
bodies of water such as lakes and rivers (6). The way in 
which water enters the ecosystem is a valuable indicator 
for droughts. For most water systems, a significant portion 
of the water originates from a snowpack (7). As a result, it 
seems quite feasible to be able to use the amount of water 
that has been stored in the ice pack to predict the amount 
of water that will be in the watershed the following year. The 
Snow Water Equivalent (SWE) measures the amount of water 
that has been stored in snow/ice. This value is calculated 
for all the snow/ice in the world. SWE uses Landsat data to 
determine the amount of water that would be released if all 
the snow were to melt (8). However, simply using the amount 
of water stored in ice to predict the amount of water that will 
be in the watershed fails to account for the contributions of 
other types of precipitation. The other part of the watershed 
comes directly from the sky as precipitation. As a result, 
any model for predicting droughts should include an input 
that measures precipitation. As temperature also affects 
the amount of water in a system, temperature is also a key 
factor that we considered. There have been models in the 
past that were used to calculate the amount of runoff from 
snow that would be produced, most notably the Snowmelt-
Runoff Model (SRM) (9). SRM uses 3 primary variables in 
their model: temperature, precipitation, and snow cover. The 
SRM demonstrates that SWE is a useful metric, and it has 
already been implemented in several data science fields (4, 
8, 9). 
 The most recent and accurate method for predicting 
droughts is DroughtCast. DroughtCast utilizes a neural 
network to predict the United States Drought Monitor (USDM) 
drought index and predominantly utilizes temperature and 
precipitation data. It is able to predict the location and severity 
of a drought up to 12 weeks in advance, with diminishing 
accuracy as the prediction length gets longer (i.e., greater 
than 12 weeks).
 For our model, we decided to use the United States 
Drought Monitor as the source of drought data, which 
takes into account all three drought types: hydrological, 
meteorological and agricultural (10). The USDM compiles a 
variety of data, including soil moisture and hydrological data, 
that determines water inputs and outputs. After all these 
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climate change likely to worsen these effects. Despite 
this, researchers have struggled to develop a method 
that accurately predicts the location of droughts. One 
of the most recent and accurate drought prediction 
models is DroughtCast. DroughtCast utilizes a 
neural network along with precipitation, temperature, 
and other weather data to predict the United States 
Drought Monitor (USDM) index of a given week; 
however, this model does not consider the contextual 
aspect of weather forecasting. Predicting weather 
exclusively using data from a single location will never 
be as successful as predicting the weather using 
data from that point in addition to its surroundings. 
As a result, we created a novel Convolutional Neural 
Network (CNN) based upon the U-Net architecture 
to predict future USDM indices by using the current 
USDM index, historical USDM indices, and a 10-year 
(2010–2019) dataset containing weather data such 
as precipitation and Snow Water Equivalent that was 
obtained from DAYMET, a NASA database for weather 
across all North America. While the data utilized in 
our model is similar to DroughtCast’s data, the model 
architectures are different. We hypothesized that this 
new architecture would improve the accuracy of our 
prediction. In comparison to DroughtCast, the mean-
squared-error of the CNN Model dropped by 85%, 
98%, and 97% for prediction times of 1 week, 6 weeks, 
and 12 weeks respectively, meaning that a vastly more 
accurate prediction.

INTRODUCTION
 Droughts are one of the many natural disasters of the world. 
The effects of droughts may not be immediately apparent, but 
their longevity makes them quite potent. Droughts kill over 
45,000 people yearly and affect the livelihoods of 55 million 
others worldwide, with climate change likely to worsen these 
effects (1). Most natural disasters have some kind of early 
detection system. For example, hurricanes have hurricane 
tracking. Early detection of a natural disaster saves both 
time and money (2). The longevity of droughts means that 
detection systems need to provide warning weeks or months 
in advance for preparation to be useful. Currently, there is 
no system to accurately predict droughts that far in advance 
(2). On top of this, the indirect cause of droughts all over the 
world is global warming and climate change. The increase in 
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factors are used to produce a drought state, the results are 
then cross-referenced with experts in the field to determine 
the true intensity of a drought. This gives a steady stream of 
accurate data for every week (4). We chose USDM over other 
sources of data because USDM is very reliable and accurate, 
as it is a government run database. On top of this, the format 
that USDM is in is very user-friendly, and they provide maps 
that we can compare to.
 This project is essentially an image segmentation project. 
Image segmentation is the process of classifying patterns 
that are found in a certain image (11). We wanted to use 
image segmentation to generate a model that is capable 
of predicting and classifying droughts using prior data from 
DAYMET and USDM
 Image segmentation is typically done using convolutional 
neural networks (12). In general, a convolutional neural 
network (CNN) allows the computer to look at an image as 
a whole, instead of looking at single pixels. CNNs allows it 
to perform image classification and segmentation. One of 
the most promising uses of convolutional neural networks for 
image segmentation is U-Net. U-Net utilizes a multitude CNN 
layers to make an image prediction. A metric for U-Nets and 
other convolutional neural networks is intersection over union 
(IoU). IoU is essentially a metric that is used solely for image 
classification. 
 All of the above leads to the goal of the current project: 
to create a drought prediction model that will be more 
effective than the prior leading model DroughtCast. First, 
we hypothesized that if the U-Net architecture is used to 
create a classification model for predicting United States 
Drought Monitor classes as opposed to the neural network 
that is used in DroughtCast, then the U-Net model will have 
a lower mean squared error. Second, we hypothesized that 
if a U-Net model is used to create a classification model for 
predicting United States Drought Monitor Classes, then the 
prediction of each class will have an IoU value greater than 
0.5, indicating a successful prediction. The knowledge IoU 
provides is important as being able to predict where a drought 
will occur and how strong it will allow those to prepare for 
droughts effectively.

RESULTS
 The model we created utilized a U-Net architecture to 
predict future USDM drought indices. The data fed into the 
novel model were current drought indices, precipitation, 
temperature, and snowfall. We compared our model to 
DroughtCast by comparing IoU and MSE. The lead times 
that were tested with our novel model were 1 week, 6 weeks, 
12 weeks, 24 weeks, and 52 weeks. There were 6 different 
drought classes named No Drought to D4, which were 
classified by the United States Drought Monitor as ranging 
from No Drought to Exceptional Drought. 
 The model had an MSE of under 0.05 for all lead times 
and IoUs greater than 0.5 for the “No Drought” class. The 
model tended to converge at 40–60 epochs. An epoch is one 
iteration of training the model. After 40–60 epochs there were 
no noticeable changes in the loss function or accuracy. On 
top of this, as the distance of the prediction increased, the 
mean IoU of the model decreased from 0.58, for short range 
models (lead time of 1 to 6 weeks), to 0.25 for long range 
models (lead time greater than 6 weeks) (Data not Shown).
 The IoUs of the model varied greatly depending on the 

drought prediction class and the length of the prediction. The 
IoUs of all the drought classes with prediction lengths less 
than or equal to 6 weeks were above 0.5 (Figure 1). There 
was a very different story for models with prediction lengths 
greater than 12 weeks. These models have IoUs greater than 
0.5 for only the no drought class while the IoUs for the other 
five classes were greater than 0.5 (Figure 2).
 The MSE of the models was calculated for all prediction 
lengths. Every single MSE for the novel model was less than 
0.05. We could only compare our model to DroughtCast for 
the lead times of 1, 6, and 12 weeks, as DroughtCast did 
not make predictions beyond 12 weeks. The testing MSEs 
for DroughtCast were all greater than 0.05 for every single 
lead time (Figure 3). The comparison clearly shows a very 
large gap between the MSE for our model and DroughtCast 
(Figure 4).

DISCUSSION
 The IoUs of the model varied by both drought class and 
prediction time. An IoU that was greater than 0.5 means that 
the model can predict that class very well (13). The mean 
IoUs were greater than 0.5 in all drought classes for only 
the short-range forecasts (up to 6 weeks), indicating that the 
short-range models could successfully predict every drought 
class with high accuracy. The long-range forecasts had IoUs 
that were above 0.5 for “no drought” but below 0.5 for the rest. 
The “no drought” class is a binary output from the model that 
tells the user whether or not there is a drought in that location. 
Since the IoU for the “no drought” class is greater than 0.5, 
it signifies that the model can accurately predict whether or 
not there is a drought in a location. The long-range forecasts 
had IoUs well below 0.5 for the remaining classes. These 
remaining classes were outputs that determined the intensity 
of a drought. Since these classes had IoUs less than 0.5, the 
model cannot accurately predict the intensity of droughts for 
time periods greater than 6 weeks.
 The MSEs of the models increase as the lead time 
increases. The MSEs of the U-Net model were significantly 
lower than the MSEs of the DroughtCast model. In the three 
weeks that could be compared, the novel model outperformed 

Figure 1. Intersection over union (IoU) values for various lead 
times of short-range models. This figure displays the Intersection 
over Union (IoUs) for the various drought short-range model lead 
times. A short-range model is defined as any model with a lead 
time of under 6 weeks. The labels on the x-axis specify the drought 
state; D0 means Drought Level Zero, etc. A model with an IoU value 
greater than 0.5 is considered successful. 
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the DroughtCast model by having an MSE 100 times smaller 
than DroughtCast. This means that with the novel model 
people will be more certain about the predictions that were 
made regarding droughts. As a result, the novel model is a 
more reliable and accurate way to predict droughts.
 A couple of errors could have occurred during the training 
of the novel model. The split between the train and test sets 
may not have been perfect. This was as the USDM data was 
used as both an input and an output. The dual usage of the 
data could have resulted in the test data getting fitted into the 
model during training. Another error could have been the fact 
that the rasterized data and the DAYMET data do not coincide 
exactly. This was as the spatial resolution of the USDM data 
and DAYMET data were different. As a result, when they were 
overlapped, approximations have to be made, potentially 
causing some error.
 The project could have gone much smoother with more 
processing power. This would allow us to use higher resolution 
which may have yielded better results. We could also have 
discounted the no drought category from the accuracy and 
loss function. These omissions would have prevented the 

bloated accuracy and shrunken loss numbers (values created 
by loss function) that were produced. We could also have 
used worldwide data. The utilization of global data could have 
prevented the issues that were seen near the edges of the 
predictions. The locations would be near the coasts of the 
United States. The issues we saw were that the predictions 
would not appear for those regions.
 The project was a proof of concept that shows that 
U-Nets can be used for drought prediction models. The 
model provides a strong machine learning baseline for 
drought prediction. The usage of machine learning in drought 
prediction is a developing field. As a result, the model could 
be used as a potential baseline for future machine learning 
drought prediction projects. In the short term, the novel 
model could be retrained for the rest of the world in order 
to create a global drought forecasting model. Additionally, 
the principles used in the project could be used to assist in 
future projects dealing with other weather phenomena, such 
as flood predictions, wildfire spread models, hurricanes, and 
any other slow weather events.

MATERIALS AND METHODS
Region of Interest
 The region of interest for the novel model was the entire 
Contiguous United States (CONUS) from January 2010 to 
December 2019. CONUS was selected as the region of interest 
primarily because data for the CONUS region was found very 
readily. However, CONUS is also a very valuable region as it 
spans several climate zones and land types, making it one of 
the best regions to develop a drought forecasting model (14).

Data Collection
 The model utilized both DAYMET and USDM inputs. 
DAYMET is a NASA database that contains climate data. 
USDM is a government database that contains drought 
data. These inputs were images, where each pixel contains 
additional data such as precipitation and drought state (Table 
1) (5, 15). The inputs for the models were all current day 
weather images while the outputs were the desired future 
drought states. Since the DAYMET and USDM inputs were in 
different formats and had different resolutions, they needed 
to be changed as it would allow all data inputs to be of an 
identical format. To reformat the data, all of the model inputs 
were projected to the World Geodetic System, and then were 
cropped to just contain the CONUS region. The data was 

Figure 2. IoUs for various lead times of long-range models. This 
figure displays the IoUs for the various drought long-range model 
lead times. A long-range model is defined as any model with a lead 
time of greater than 6 weeks. The labels on the x-axis specify drought 
state; D0 means Drought Level Zero, etc. 

Figure 3. Drought Model Mean Squared Error (MSE). This figure 
shows the mean squared error (MSE) of our novel model with 
varying lead times. The Temporal Holdout MSE refers to the testing 
set, which was not included in the training set.

Table 1. Data Inputs. Description of the data utilized as an input in 
our drought model.
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projected to the World Geodetic system in order to allow for a 
seamless display of the data on maps. The resolution of the 
CONUS region was then changed to 256 x 256 pixels. Since 
the USDM data is provided in the vector shapefile format, 
it was rasterized. Additionally, since the DAYMET data is 
provided on the Lambert Conformal Conic Projection, it was 
reprojected to the World Geodetic System. The reprojection 
was done utilizing the pyproj library (16). After this, the inputs 
were normalized using batch normalization and split into 
training and test sets, with 60% of the data in the training set 
and 40% in the testing set.
Model Construction
 The model utilized the U-Net architecture and was 
programmed in Python 3.0.0. It uses convolutional layers 
which takes a group of pixels and assigns it one value (17). 
Python API’s Segmentation Models were used to create 
the vast majority of our model’s architecture (18). The 
Segmentation Models API gives us a U-Net template for us to 
modify. The first step was to download the base architecture 
to the local machine. After this, the two parts of the model 
that were edited were at the input stage and the output stage. 
Since the images we utilized as inputs have multiple values 
stored in each pixel, we coded the model to accept multiple 
values per pixel. The same thing occurred for our outputs. 
In addition, our model used categorical cross entropy as the 
loss function to determine how well it was performing and to 
improve itself. 

Measuring Model Effectiveness
 There were two metrics that we utilized to measure the 
effectiveness of our model. The first was mean squared 
error (MSE). MSE was calculated by squaring the difference 
between the true value and the predicted value for each data 
point and taking the average of the squares (19).
 The second metric was Intersection over Union (IoU) (13). 
IoU was calculated by taking the area of the overlap of the 
true values and the predicted values and dividing it by the 
area of the sum of the true values and the predicted values 
minus the overlap (15). The thresholds we used for IoU were 
greater than 0.5, and the threshold we used for MSE was 
anything less than the DroughtCast model.
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Appendix  
https://github.com/pl256211/researchProject 

Code used while constructing the project. 

 


