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involved in complex environments may take months to train 
to an acceptable accuracy. A major reason for such resource 
cost is the often-high amount of training data necessary to 
effectively and quickly train an RL model (8). This represents 
a major problem with current machine learning algorithms, 
as high resource and time costs limit the feasibility of RL in 
complex situations and edge computing. In order to achieve 
efficient RL training, it is helpful to reduce the amount of 
training data used during the RL training process. A smaller 
amount of training data will enable RL models to train in less 
time and with less memory.

 The training data of an RL model is stored in a replay buffer 
as entries, with each entry having the following composition: 
(S1, A, S2, R) (9). This entry is a datum explaining how an 
action (A) being taken in a certain state (S1) will lead to a 
new state (S2), and what reward (R) that change in states will 
cause. A large replay buffer, currently necessary for effective 
model training, creates a hardware inefficiency in RL, 
requiring both more memory and more time to train. Reducing 
the size of the replay buffer through pruning can remedy this 
inefficiency. This study focused on reward (R), how it relates 
to the improvement that the entry will bring to the model, and 
how this information can be applied to replay buffer pruning 
(Figure 1).

 There has been much work in the past on the subject of 
pruning reinforcement learning algorithms concerned with 
decreasing the amount of data, time, and resources required 
to effectively train an algorithm. However, current techniques 
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SUMMARY
Reinforcement learning (RL) is a type of machine 
learning that develops artificial intelligence by 
training an algorithm through multiple generations 
to understand what strategies to use in various 
situations. RL has applications in virtually every 
field, from transportation to research. However, 
RL is limited in that it is very resource intensive, 
partially because of the necessity of a large replay 
buffer, which contains the data learned from each 
episode. This study provides knowledge on replay 
buffer reward mechanics to inform the creation of 
new pruning methods for improving RL efficiency. 
Specifically, we develop a novel approach designed 
to reduce storage complexity of the replay buffer and 
training data and thus improve model efficiency. We 
create three algorithms, Threshold Replay Buffer 
Pruning (TRBP), Cluster Replay Buffer Pruning 
(CRBP), and Inverse Threshold Replay Buffer Pruning 
(ITRBP), for this purpose, testing three contradicting 
theories on reward mechanics. We hypothesized that 
TRBP’s theory would be the most conducive to real-
world conditions, which our results corroborated. 
These results indicated that TRBP can achieve a 
2-fold reduction in replay buffer size with only a 5% 
reduction in score, while CRBP and ITRBP performed 
much worse. This supported the hypothesis that 
TRBP’s reward thesis is the most accurate out of 
the three algorithms, as well as demonstrated that 
TRBP is a potentially effective replay buffer pruning 
algorithm.

INTRODUCTION
 Reinforcement learning (RL) is an area of machine learning 
concerned with the development of algorithms capable of 
making decisions that maximize a defined reward in a given 
situation. In the real world, RL leads the way in developing self-
driving technology and industrial automation (1, 2). It is used 
in healthcare, where RL systems can recommend treatments 
to patients and develop new medications (3). RL can control 
a traffic grid, tell investors how to manage their portfolios, and 
more effectively and accurately inform governments on the 
state of their economy (4, 5, 6). As such, RL is an immensely 
powerful tool.

 A major limiting factor in RL is its high running cost, as 
training an effective model can take weeks to months and 
require terabytes of memory (7). Often, it is impractical to 
train on mobile devices or low-end computers, and algorithms 
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Figure 1: Explanation of replay buffer pruning and its theoretical 
effects on algorithm performance. Original replay buffer is larger 
and leads to slower training, but after it is passed through the pruning 
algorithm, it is condensed, leading to faster training due to fewer 
sampled entries.
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focus on creating more efficient ways to train algorithms rather 
than pruning training data itself. Agapiou et al. developed 
a novel way of reducing training time with their Deep 
Q-Learning from Demonstrations (DQfD) algorithm (10). DQfD 
accomplishes this reduction by introducing demonstration 
data into the algorithm's pre-training phase, which allows the 
algorithm to imitate the demonstrator and apply its learned 
policy in the scene, giving it a head start in forming an 
effective score-maximizing strategy. DQfD introduces new, 
more effective training data as learning catalysts, but does 
not prioritize pruning existing training data to lower resource 
costs, leaving some room for efficiency improvements. 
Sokar et al. contributed to solving this problem as well with 
their dynamically adapting neural network that significantly 
reduced its size while improving its learning speed (11). They 
achieved their method, Dynamic Sparse Twin Delayed Deep 
Deterministic policy gradient (DS-TD3), through innovative 
sparse topologies and neural networks, allowing faster training 
while achieving a better performance than its counterparts. 
DS-TD3, like DQfD, also does not focus on pruning training 
data, but rather the neural networks themselves, leading to 
similar limitations. Group-Sparse Training (GST) focuses on 
achieving better performance on mobile devices, which are 
primarily limited by memory bandwidth (12). Using GST and 
reward-aware pruning (RWP), the compression ratios and 
stability of training are simultaneously increased. GST and 
RWP tackle the same mobile device efficiency problem as 
this paper does but focus on improving model compression 
methods rather than pruning the replay buffer of such 
algorithms. Livne et al. developed one of the first techniques, 
Policy Pruning and Shrinking (PoPS), which can train DNNs 
capable of retaining strong performance after each pruning 
process (13). This performance is possible due to the ability 
to identify and preserve the most important information of 
the model while removing redundancies, creating a compact 
yet effective version of the initial DNN. PoPS can effectively 
prune DNNs, but just as with other models, it lacks the 
ability to prune training data in the same way. The Rigged 
Reinforcement Learning Lottery (RLx2) applied ultra-sparse 
networks to achieve model compression (14). A variety of 
different mechanisms, such as a dynamic-capacity replay 
buffer and gradient-guided topology search scheme, work in 
tandem to achieve such results. RLx2 again focuses on the 
neural network itself, not on the similarly important training 
data. 

 In comparison, this paper focuses on a virtually unexplored 
field in AI, aiming at pruning training data contained in the 
replay buffer during the exploration phase rather than during 
the training phase. As such, the results, methodology, and 
algorithms of our paper could not be easily compared to those 
of other papers.

 To test the importance of the characteristics of the 
reward, we built three novel pruning algorithms based on 
three different and contradictory theories about replay buffer 
reward. We built the first algorithm, Cluster Replay Buffer 
Pruning (CRBP), on the theory that every reward is equally 
valuable to the model, no matter its absolute value. Thus, 
the pruning algorithm ensures that representative entries are 
kept with high and low absolute value rewards. Intuitively, this 
theory could be justified as both extreme and neutral rewards 

having an important part in a model, with the extremes giving 
big-picture guidelines and neutral reward entries providing 
finer-tuned tweaks.

 We built the second algorithm, Threshold Replay Buffer 
Pruning (TRBP), on the theory that the higher the absolute 
value of the reward or punishment, the more valuable the 
reward is to the training of the model. Thus, the pruning 
algorithm removes low absolute value reward entries first. 
Intuitively, this theory could be justified as higher rewards 
show what strategies work and what strategies really do not. 
This is more valuable to the training of a model than an entry 
that shows a neutral strategy. 

 We built the third algorithm, Inverse Threshold Replay 
Buffer Pruning (ITRBP), on the theory that the higher the 
absolute value of a reward, the less valuable the reward is to 
the training of the model. Thus, the pruning algorithm removes 
high absolute value reward entries first. Intuitively, this theory 
could be justified as extreme rewards being outliers, and 
less likely to be applicable to a model's situation than neutral 
rewards. More detailed information on all used models can be 
found in the appendix. 

 We chose to create three separate algorithms because it 
would allow us to test the performance of each type of reward 
entry (high absolute value of R to low) individually, which 
would allow us to conclude which was most important to a 
model’s performance. We hypothesized that TRBP would be 
the most effective because it prioritizes more extreme value 
entries. We believed the theory behind it was most plausible, 
and that extreme entries provide more information to the 
model on which strategies were successful than more neutral 
value entries.

 We tested the algorithms using a game called Lunar 
Lander, provided by OpenAI, in which the player controls a 
small lander and attempts to land it on the moon (15). Landing 
closer to the targets and at a more level angle results in a 
higher score. After each episode, the game resets so the 
model can play again. We found that when TRBP pruned 
50% of the replay buffer, the score decreased by only 5%, 
while the scores of CRBP and ITRBP were noticeably lower. 
These results demonstrated the viability of reward-based 
replay buffer pruning as a pruning strategy and showed that 
the theory behind TRBP’s algorithm is most accurate.

RESULTS
 We tested the algorithm with the Lunar Lander game. One 
episode represents one training cycle, in which 64 games 
of Lunar Lander are played before the model is updated to 
learn from its experience. We ran these algorithms for 300 
episodes, 3 times each, and took the average of the three 
at 25-episode intervals. We set the algorithms to have a 
pruning ratio of 50%, meaning that 50% of the entries in the 
replay buffer would be removed each update. Comparing the 
effectiveness and scores of these pruning algorithms with the 
scores of the unpruned algorithm and a pruning algorithm 
which randomly removes entries, Random Replay Buffer 
Pruning (RRBP), as controls indicated which reward theory 
was more accurate.
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 Though most of the algorithms started by achieving 
around the same in-game score, we saw more variations 
as the game proceeded and the algorithms began to learn 
(Figure 2). The unpruned algorithm improved its score by 
210.72 over the course of 300 episodes, at an average rate of 
0.70 per episode. It reached a positive score by episode 275 
and an end score of 34.8. RRBP improved its score by 171.74 
over the course of 300 episodes, at an average rate of 0.57 
per episode. It never reached a positive score and achieved 
an end score of -37.23. CRBP improved its score by 141.2 
over the course of the 300 episodes, at an average rate of 
0.47 per episode. It never reached a positive score and had 
an end score of -31.61. TRBP improved its score by 195.3 
over the course of 300 episodes, at an average rate of 0.65 
per episode. It reached its first positive score at 300 and had 
an end score of 22.7. ITRBP saw a score decrease of 34.09 
over the course of 300 episodes, at an average rate of -0.11 
per episode. It never reached a score greater than -100 and 
had an end score of -211.09. 

 We calculated standard deviation by determining how 
much the average score of a given algorithm’s run deviated 
from the average score of all three runs. The standard 
deviations of the first four algorithms (unpruned, RRBP, CRBP, 
TRBP) were similar: 17.97, 22, 19, and 26.11 respectively. 
However, the average standard deviation of ITRBP was 
much higher, reaching 49.41. It is unclear why the neutral-
prioritizing algorithm varied so dramatically compared to the 
other algorithms, especially RRBP, but the reason could be 
tied to the poor performance of the algorithm. Perhaps luck 
is a bigger factor in the score of an algorithm with few good 
strategies than one that has a clearer plan of how to act.

 Comparing these algorithms established TRBP as the 
most effective at increasing RL efficiency. TRBP ended with 
a slightly lower score than the unpruned algorithm, but with a 
much higher score than cluster pruning and random pruning, 
which both had similar scores. All performed dramatically 

better than inverse threshold pruning (Figure 2). 

 By the end of the 300 episodes, TRBP performed better 
than RRBP. We saw a clear improvement of almost 60 
between the end scores of TRBP and RRBP. TRBP pruning 
achieved a roughly 14% higher total improvement, and a 
score after 25 episodes (the first recorded, or initial score) 
that was 36.37 higher than random pruning. TRBP also 
performed better than cluster pruning in almost all areas. 
TRBP achieved a 54.31 increase in end score, with a 38% 
higher total improvement, though both algorithms had almost 
identical scores after 25 episodes. In comparison to the 
unpruned algorithm, TRBP only performed slightly worse, 
despite having half the training data. While total improvement 
was around 7% less, the end score of TRBP was only 
12.1 less than the unpruned algorithm, with an initial score 
difference of only 3.32. In contrast, RRBP saw a decrease 
of 18.4% in total improvement, with an end score difference 
of 72.03 and an initial score difference of 33.05. Meanwhile, 
the ITRBP pruning algorithm performed poorly. Despite 
having a similar initial score to other algorithms, its score 
consistently deteriorated after the 150-episode mark. It is the 
only algorithm to have achieved a lower end score than initial 
score, and to have never risen above -100 (Figure 2).

DISCUSSION
 The results of our experiments corroborate our hypothesis 
that TRBP’s reasoning is most accurate under the tested 
conditions. Since the algorithm built on prioritizing extreme 
rewards performed better than those prioritizing all rewards 
equally, it can be inferred that in Lunar Lander, extreme 
rewards are more helpful to optimizing score than neutral 
rewards are. This conclusion is further strengthened by the 
fact that ITRBP, which operates with a theory opposite to 
TRBP and only learns on neutral reward entries, performed 
very poorly, likely for the same reason. On the other hand, the 
performance of CRBP, which values both types of rewards 
equally, was not very different from that of RRBP. Additionally, 

 Figure 2: The unpruned model and TRBP achieved the best scores over time. Line graph showing all algorithms’ performance in the 
form of score. RL was run on Lunar Lander for 300 episodes with various pruning buffer algorithms. Score data was collected and averaged 
from 3 runs every 25 episodes, then plotted. Error bars represent standard deviation.
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this data shows that TRBP is a relatively viable algorithm in 
the conditions tested to reduce the amount of training data 
required for a model to learn. It performs at a level similar to 
the unpruned algorithm with half the training data and runs 
much more accurately than RRBP, legitimizing itself as well 
as replay buffer pruning. 

 There were two abnormalities in the results. TRBP only 
began improving over RRBP from Episode 230 onwards 
(Figure 2). This may be due to the nature of reinforcement 
learning. At the beginning of the simulation, all entries in the 
replay buffer will have very low rewards, since the algorithms 
have not created a good strategy yet. Since TRBP prioritizes 
high absolute value of rewards, it will always prioritize the 
extremely low rewards rather than the entries with improved 
rewards that grow closer to zero but are still negative. However, 
as the simulation progresses, the algorithm’s rewards will also 
increase, until it is able to prioritize high value rewards as well 
as low entry rewards. This causes it to improve at a much 
faster rate. Another abnormality is that the standard deviation 
of ITRBP was higher than that of other algorithms. This could 
be due to ITRBP’s poor performance. If the algorithm is 
unable to create a good strategy, luck may play a far greater 
role in its performance than that of an algorithm with a good 
strategy. 

 There are several potential biases that could have 
influenced the results of this experiment. First, each algorithm 
was only run three times, which may not be enough to 
sufficiently remove the element of random chance within the 
experiment. Additionally, the algorithms were only run for 
300 episodes each, which may not have been long enough 
to determine the true effectiveness of each algorithm. 
The environment of the game, Lunar Lander, is also a 
limitation. Lunar Lander is a straight-forward game in that 
the parameters for success are clear – angle of landing, and 
distance to target. Minimizing both will always lead to a higher 
score, and thus is a better strategy. In more complex games, 
like racing or strategy games, the parameters of success are 
less clear. The consequences of important choices in these 
games may take longer to fully realize, and thus seem neutral 
at first. Thus, Lunar Lander’s simplicity may make TRBP more 
helpful than it would be in more complex games. Finally, the 
pruning ratio (that is, the percentage of the replay buffer that 
is removed) was tested at only 50%. The various algorithms 
could perform differently at different levels of pruning, such as 
25% or 90%. If replicated, future experiments should increase 
the number of runs per algorithm, increase the number of 
episodes per run, and vary the pruning ratio and environment 
each algorithm was tested on.

 Future work could be done on developing more complex 
algorithms around replay buffer pruning, as well as discovering 
new mechanics and interactions between the various parts of 
the replay buffer to better inform these future algorithms. As 
for TRBP, it could be further tested and expanded upon to 
become more effective. Replay buffer pruning is a powerful 
tool in the RL sphere that should be investigated further, 
especially to increase efficiency and decrease the size of RL 
models.

 This study touched upon the power of replay buffer 

pruning and the mechanics of reward within the replay buffer. 
The study also shows the effectiveness of TRBP as a pruning 
model under the conditions studied, demonstrates that 
extreme reward entries are more valuable to the training of a 
model than neutral reward entries, and serves as a proof of 
concept for future work on this topic.

MATERIALS AND METHODS
 The baseline machine learning model was created using 
PyTorch in Google Colab, with a batch size of 64 and a buffer 
size of 100,000. In order to increase the speed at which the 
code would run, the provided GPU notebook setting in Colab 
was used. A basic RL model and algorithm were created, 
consisting of three linear layers: an input, a hidden, and an 
output. Then, four novel pruning algorithms were applied and 
tested on the model: the three experimental algorithms, and 
the control algorithm that randomly pruned. These algorithms 
were built and coded in the same Python environment that 
the baseline model was created in, and more details about 
them can be found in the appendix. All algorithms were tested 
with a 50% pruning ratio. This ratio was achieved by applying 
an r parameter (the maximum or minimum absolute value of 
a reward before pruning for ITRBP and TRBP respectively) of 
about 1.6 for ITRBP and TRBP, while four clusters were used 
for CRBP. Each algorithm was run 3 times to help eliminate 
the randomness of the experiment, with each run consisting 
of 300 episodes, with data collected and averaged every 
25 episodes. Results were compared to each other and the 
unpruned algorithm. More details on the model can be found 
on the GitHub page in the appendix.

Statistics
 We graphed and recorded the data using Google Sheets.  
We calculated standard deviation by determining how much 
the average score of a given algorithm’s run deviated from the 
average score of all three runs.
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APPENDIX
Github Code Link: https://github.com/destroyer000lucky/
Gymnasium/blob/main/ReplayBufferPruningCode.ipynb

Random Reply Buffer Pruning (RRBP)
RRBP runs through each entry in the replay buffer and 
generates a random number between zero and one. In the 
case of a 50% pruning ratio, if the number was above 0.5, 
then the entry would be deleted. Otherwise, it would continue 
to be used for training the model. 

Cluster Replay Buffer Pruning (CRBP)
CRBP takes in two inputs: the number of clusters (groups that 
the replay buffer is split into), and the percentage pruned from 
each one. The algorithm then sorts entries based on reward 
into a corresponding cluster, each representing an equal 
interval between zero and one as well as one cluster each 
for rewards greater than one or less than negative one. Then, 
each cluster is randomly pruned to the percentage specified 

by the user.

Threshold Replay Buffer Pruning (TRBP)
TRBP takes in a threshold variable r. It runs through each 
entry in the replay buffer, comparing its reward to the r. If 
the reward is between -r and r, then the entry is removed. 
Otherwise, it continues training the model. In this experiment, 
r was selected to be a constant value achieving a pruning ratio 
of 50% in order to be consistent with the other algorithms. In 
this case, this constant was 1.6.

Inverse Threshold Reserve Buffer Pruning (ITRBP)
IRBTP takes in a threshold r. It runs through each entry in the 
replay buffer, comparing its reward to the r. If the reward is 
not between -r and r, then the entry is removed. Otherwise, 
it continues training the model. In this experiment, r was 
selected to be a constant value achieving a pruning ratio of 
50% to be consistent with the other algorithms. In this case, 
this constant was 1.6.


