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vector machines (3).
In CNNs, there are artificial neurons that simulate the 

behaviors of the networks in human brains (4). The network 
comprises mainly three sections of layers, the convolution 
layers, the pooling layers, and the fully connected layer (3). 
In the convolution layers, the network uses a kernel, a grid of 
weights that serves to extract features from the input (5). The 
weights can be adjusted after training over multiple epochs. 
In the convolution layers, the input is processed by element-
wise multiplication with the kernel grid. Thus, the feature can 
be extracted from the original input (5). Next, the pooling 
layers serve to down-sample the data into smaller dimensions 
without losing the general features (5). This process can be 
done using techniques such as max-pooling or average-
pooling, where the values are calculated into smaller sizes 
(5). The neurons are weighted and interconnected, and the 
information of the neurons is processed to the next layer. 
Lastly, the information will be passed on to the fully connected 
layer as a flattened vector that classifies the results (5). 
The network includes a loss function on this last layer that 
calculates the prediction error. For instance, soft-max, cross-
entropy, or Euclidean error are examples of loss functions in 
ML (3). 

Additionally, in CNNs, a problem of overfitting may occur 
(6). Overfitting is a problem in which the machine adapts to the 
training data too well (6). The units co-adapt with each other to 
the extent that they cannot generalize on test data other than 
the training set (6). Therefore, when the CNN is used with 
unseen data, the performance of the model decreases even 
though the performance with seen data can be decent. To 
tackle this problem, the method of including dropout layers is 
often introduced to the network (6). Dropping out each neuron 
with a certain probability creates possible combinations of 
the network (6). Every reduced network is called a thinned 
network (6). Therefore, training the network becomes training 
multiple different thinned networks, with weight sharing as the 
weights are the same, reducing the problem of overfitting (6). 

Finally, an essential part of CNNs is the activation function. 
Before the neurons pass information to the next layer, the 
output is modified by an activation function, which often adds 
nonlinearity to the network (4). With complex distributions of 
the data, choosing a linear function as the activation would 
only introduce the network with linear complexity (4). The 
network would not be able to deal with images with complex 
data systems or data distribution (4). So, the network needs 
activation functions to increase the machine’s ability to 
process complex information. In reality, the distribution of 
more complex data, such as image recognition, can be 
sparse, noisy, and skewed (4). Therefore, choosing the wrong 
activation function can cause the loss of important trends or 
information on the data, which can drastically affect the final 

The effect of activation function choice on the 
performance of convolutional neural networks

SUMMARY
With the advance of technology, artificial intelligence 
(AI) is now applied widely in society. For example, 
natural language processing, speech recognition, 
and autopilot are all famous examples of how AI is 
changing our world. In the study of AI, machine 
learning (ML) is a subfield in which a machine learns 
to be better at performing certain tasks through 
experience. This work focuses on the convolutional 
neural network (CNN), a framework of ML, applied to 
an image classification task. Specifically, we analyzed 
the performance of the CNN as the type of neural 
activation function changes. Choosing the right neural 
activation function is crucial to prevent the loss of 
important trends and increase the efficiency of training 
time. Among all the different widely used activation 
functions, we hypothesized that a rectified linear unit 
(ReLU) would be the most efficient in training time and 
attain the highest accuracy on the image recognition 
task because ReLU has the advantage of avoiding the 
vanishing gradient problem and only requires light 
mathematical calculations. Having high accuracy 
and efficiency in the task of image classification is 
beneficial as this technique can be employed in many 
different real-world applications, such as diagnosing 
in healthcare, identifying potential threats in security, 
or developing an autonomous vehicle. Our results 
indicate that when the number of hidden layers is 
small, networks employing the ReLU performed 
similarly to networks using hyperbolic tangent, and 
both networks with ReLU and hyperbolic tangent 
outperformed networks using the sigmoid function.

INTRODUCTION
Artificial intelligence (AI) is a popular and powerful 

branch of computer science. Machine learning (ML) is a 
specific type of AI that focuses on constructing a system that 
improves automatically through experience (1). Recently, 
with advances in the available online datasets and newly 
developed algorithms, ML has progressed significantly in 
multiple different fields, including but not limited to health 
care, education, finance, and policing (1). In this paper, 
we aim to discuss a specific application of ML algorithms: 
image recognition. Image recognition is already in use within 
our society. Facial recognition, handwriting recognition, 
and medical image recognition are a few examples of their 
applications (2). ML models are used for 2D image analysis, 
and convolutional neural networks (CNNs) outperform other 
architectures, such as deep belief networks and support 
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accuracy of the ML model. Each point of the dataset can be 
valuable and provides much information. 

Therefore, in our work, we aim to compare the performance 
of the CNN using different activation functions, such as 
Sigmoid, Hyperbolic Tangent (Tanh), and Rectified Linear 
Unit (ReLU), and benchmark the results in terms of training 
time, validation accuracy, testing accuracy, precision, recall, 
and F1-Score. We would build on the foundation of CNNs to 
determine which activation among ReLU, Tanh, and Sigmoid 
was the most suitable for the field of image recognition. We 
would thoroughly review what functions to use in image 
recognition and other fields related to image recognition, such 
as voice recognition. 

While most of the existing studies emphasize networks 
with multiple layers and parameters (7–9), in this research, 
we focus mainly on a CNN with a small number of layers, 
aiming to discuss the results of different activation functions 
with a relatively small network. For general networks, ReLU 
is the most widely used activation function (4). For our 
experiment setup, we hypothesized that ReLU would have the 
best performance on our image recognition dataset because 
it avoids the problem of vanishing gradients and does not 
require heavy calculations. The vanishing gradient problem 
occurs when the gradient of the loss function is very small, 
close to zero, drastically slowing down the learning process 
(4). Sigmoid and Tanh have very small derivatives close to 
zero when the input is too large or small, while ReLU avoids 
this problem. Therefore, we hypothesized that ReLU would 
outperform Sigmoid and Tanh (4). 

We ran a CNN using Python and TensorFlow, changing 
the activation function used in an image recognition task with 
three trials. We concluded that ReLU and Tanh performed 
similarly on our small CNN model. Even though the training 
time taken was slightly less, the advantage of ReLU in 
accuracy was not statistically significant. Nonetheless, ReLU 
and Tanh performed significantly better than Sigmoid in terms 
of training time, testing and validation accuracy, precision, 
recall, and F1-score. 

The results could also be inferred or extrapolated into 
other neural networks requiring activation functions. We 
would also analyze processes and verify the existing studies 
comparing existing functions’ performance. Our research 
would serve as helpful data and conclusions for researchers 
in the field of lightweight CNNs. Specifically, our research 
could benefit researchers that aim to attain high accuracy 
with limited hardware and time, such as for image detection in 
auto driving that requires high accuracy within a short amount 
of time (10).  

RESULTS  
We first built the CNN with Python code and changed the 

activation functions accordingly to test the results. We ran 
the CNN on the Modified National Institute of Standards and 
Technology database (MNIST) dataset, which consists of 
60,000 28 by 28 pixels images in grayscale. The activation 
functions included in this study include ReLU, defined as 
f(x)=max(0,x), the Sigmoid function, expressed as              , 
and Tanh, represented by            . We split the dataset 
into training and testing sets. First, we compared the training 
time of the three activation functions to evaluate the different 
activations. Sigmoid and Tanh functions have similar training 
times of about 49 to 50 seconds for each epoch (Figure 1A, 

B). On the other hand, ReLU had a slightly lower training time, 
taking about 46 to 48 seconds for each epoch (Figure 1C). 
As the results show, ReLU had better efficiency in training 
the model. 

Next, we compared the validation accuracy that was 
evaluated when training. Even though Sigmoid and Tanh had 
significantly lower validation accuracies at the beginning of 
the training epochs, each of them had around 98% to 99% 
training accuracy in the last epoch (Figure 2A,B). On the 
other hand, ReLU had a high validation accuracy throughout 
the 10 epochs (Figure 2C). Additionally, Tanh and ReLU had 
slightly better accuracies in the last epoch, with about 99% 
compared to Sigmoid’s 98% (Figure 2). 

Last, we compared the testing accuracy, precision, 

Figure 1: Training time minimized using ReLU function 
compared to Tanh and Sigmoid. The CNN is run with Tanh, 
Sigmoid, and ReLU on the training set taken from the MNIST dataset 
with the Keras TensorFlow module. Training time is obtained with 
Keras TensorFlow’s function. Bar graph showing the training time of 
the CNN with the A) Tanh function, B) Sigmoid function, and C) ReLU 
function for each epoch. Data shown from first trial only.

Figure 2: All three functions’ training and validation accuracy 
increase with successive epochs; Sigmoid started with about 
90% of validation accuracy while Tanh and ReLU both started 
at about 98% validation accuracy in the first epoch. The CNN 
is run with Tanh, Sigmoid, and ReLU on the training set taken from 
the MNIST dataset with the Keras TensorFlow module. Training and 
validation time is obtained with Keras TensorFlow’s function. Line 
graph showing the training and validation accuracy with A) Tanh 
function, B) Sigmoid function, and C) ReLu function for all epochs. 
Data shown from first trial only.
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recall, and F1-score of the three functions (Table 1). Testing 
accuracy served as the final evaluation with the test set after 
the training was completed. ReLU and Tanh had the best 
accuracies above 99%, with ReLU being slightly better by a 
margin of 0.07%. Sigmoid performed the worst on the final 
accuracy, with only about 98%. For precision, recall, and F1-
score, all three functions have similar values with their test 
accuracy; sigmoid had 98% of all the metrics, while ReLU and 
Tanh were slightly better with 99%.   

To calculate and verify the error of the experiment, 
we performed the experiment three times and calculated 
the standard deviation of the accuracies of the trials. Tanh 
and ReLU had a standard deviation of about 0.00033, and 
Sigmoid had a standard deviation of 0.00017.

Additionally, with the data from the three trials of the 
experiment, we also performed ANOVA tests on the mean 
accuracies of the trials. Since precision, recall, and F1-score 
are all similar to the accuracies, we used testing accuracy 
as the major metric. We found a significant difference in 
accuracy of the three groups (p=6.3 * 10-8, f=750). Therefore, 
we performed Tukey’s test as the post-hoc test to do pairwise 
comparisons among the groups. We found no significant 
difference in testing accuracy between the ReLU and Tanh 
functions (p=0.11) (11). On the other hand, we found a 
significant difference in accuracy between ReLU and Sigmoid 
(p=0.0) and Tanh and Sigmoid (p=0.0) (11). 

DISCUSSION
Our results showed that ReLU had similar testing 

accuracies with Tanh in our model, and both ReLU and 
Tanh performed significantly better than Sigmoid in terms of 
testing accuracies. There is a trend of ReLU also being better 
in terms of training time, validation accuracy, and F1-score 
from our raw data. The Sigmoid function fell behind ReLU 
slightly, with a testing accuracy of 98% compared to ReLU’s 
99%. Therefore, we concluded that for the MNIST dataset, 
the ReLU function is the most efficient function by a narrow 
margin. Our results also showed that the MNIST dataset is a 
balanced dataset, as the precision, recall, and F1-score are 
all consistent with its accuracy. This further highlighted that 
the functions would not have the problem of too many false 
positive or false negative results (12). 

One of the reasons ReLU was the most efficient is that 
it avoided the problem of vanishing gradients. This problem 
happens when the input is very large or small, and the 
gradients of the activation function become infinitely small, 
which causes the learning process of utilizing the derivative 
to decrease drastically (13). Therefore, non-saturated 
nonlinearities generally perform better than saturated ones 
(14). The saturated nonlinearities almost behave like a 
horizontal line with an extremely small gradient, slowing the 

gradient descent process. Sigmoid and Tanh functions are 
saturated nonlinearities, while ReLU is not. Therefore, ReLU 
avoids this problem as its derivative does not become small 
when the input is very large or small. Moreover, Sigmoid’s 
derivative ranges from 0 to 0.25, and Tanh’s derivative ranges 
from 0 to 1. After multiple layers in the network, the output 
might result in infinitely small gradients, also causing the 
convergence performance to decrease drastically.

Next, ReLU is computationally lighter than other 
exponential-related functions such as Sigmoid and Tanh. 
ReLU does not involve any exponential or logistic operations 
but simply takes the max of zero and input, as the function 
of ReLU is given by the formula f(x)=max(0,x)   (4). In the 
MNIST dataset, ReLU took 1 to 2 fewer seconds to train per 
epoch compared to the exponential functions Sigmoid and 
Tanh. In short, ReLU is exponentially lighter than the other 
two functions because it doesn’t involve computational-
heavy exponential calculations, and it has bigger gradients 
when the input is large. Moreover, since ReLU’s F1 score was 
consistent with its accuracy, we verified ReLU didn’t have the 
problem of having false positive or false negative results (12). 
For the above reasons, we concluded that ReLU was the best 
activation function for the MNIST dataset. 

However, in our model, ReLU was significantly better 
than Tanh. ReLU was only slightly better than Tanh in terms 
of accuracy by a margin of 0.07% on the mean of the three 
trials (Figure 3). On the other hand, Tanh and ReLU both 
performed significantly better in terms of accuracy on the 
MNIST dataset than Sigmoid. 

The reason why ReLU only had a slim advantage in the 
MNIST dataset was likely because our CNN only used a small 
number of layers. Even though the ReLU function avoided 
vanishing gradient problems and was computationally lighter 
than the Tanh function, in our dataset with 28*28-pixel 
pictures, we only needed two hidden layers to compute our 
results. Therefore, the advantages of the ReLU function did 
not optimize the training processes as much as they would 
in networks with more than 100 layers. The problem of 
vanishing gradients was not as significant in our network with 
2 convolution and pooling layers as it would be in a network 

Table 1: Performance of the three activation functions with the 
test set. The table shows the results of the test accuracy, precision, 
recall, and F1-score of the three activation functions. The data 
was obtained from the trained network using the Keras Tensorflow 
module.

Figure 3: ReLU and Tanh and similarly high testing accuracies 
throughout the three trials and mean, while Sigmoid remained 
lower than the ReLU and Tanh. The graph shows the accuracies of 
the three activation functions with three trials. The rightmost column 
shows the mean of the three trials. ReLU and Tanh performed 
significantly better than Sigmoid (p<0.05), while ReLU doesn’t 
perform significantly better than Tanh (p > 0.05). 
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with 100 convolution and pooling layers.
We also observed that Tanh had a better performance 

than the Sigmoid function. The Tanh function most likely 
performed better than the Sigmoid function because it 
had a larger range, from -1 to 1, compared to the Sigmoid 
ranging from 0 to 1. If the machine wanted to obtain negative 
outputs from the input, it would need extra transformations 
on the Sigmoid function to approximate a negative value, 
which required extra numbers of neurons and layers. On the 
other hand, the Tanh function could already create negative 
outputs, so the Tanh function had better accuracy and 
training time in our case. With a larger range but maintaining 
a similar s-shape, the Tanh function had steeper derivatives 
ranging from 0 to 1 compared to Sigmoid’s derivatives 
ranging from 0 to 0.25, which made gradient descent more 
efficient when converging. Moreover, convergence during the 
backpropagation is usually more efficient if the average of the 
input variable is close to zero (15). Tanh’s input took negative 
and positive values, so its average value was more likely to be 
closer to zero compared to Sigmoid’s input, which only took 
positive values. 

In conclusion, in the MNIST dataset using CNN, ReLU 
performed better than the other two functions due to its 
advantage in the steepness of the slope and computationally 
light operations. However, ReLU did not have a significant 
superiority in networks with only a small number of hidden 
layers. Additionally, the ReLU and Tanh functions performed 
better than the Sigmoid function as it had steeper derivatives 
and a wider range of output that optimized the gradient 
descent process.

Further research on a similar topic could be done on 
datasets that required more hidden layers in the neural 
network. For example, medical image classification is a topic 
that is more complex in nature, requiring more hidden layers 
in CNN. In a 2021 study, Helen and colleagues showed 
that to diagnose diabetes using CNN, more than 2 layers 
were needed for the network to attain better accuracy on 
diagnosing diabetes (16). In experiments with more hidden 
layers required, the results could differ from the outcome 
of this experiment as the network included more layers 
to process the data. ReLU’s advantages in the gradient 
descent algorithm could have a bigger impact on accuracy 
and efficiency. However, since grayscale handwritten digits in 
the MNIST dataset and real-world images are very different 
in nature, the outcome of this experiment might not be 
generalizable to medical images or other complex datasets. 
Nevertheless, our research on small CNNs can serve as a 
benchmark of ReLU, Tanh, and Sigmoid’s performance for 
further research. Specifically, it can benefit researchers that 
aim to attain high accuracy with limited hardware and time, 
such as for image detection in auto driving that requires high 
accuracy within a short amount of time.

MATERIALS AND METHODS
The MNIST dataset used for this experiment consists 

of 60,000 28 by 28 pixels of black and white images of 
handwritten digits (17). It was obtained from the TensorFlow 
dataset to train and test the model (17). The dataset was split 
into a training set and a testing set with a ratio of 8 to 2. The 
training set was used to train the network. The testing set was 
used to evaluate the result of each function based on its final 
accuracy and final loss function. 

The TensorFlow package and Python codes were used 
to build a CNN and test the performance (18). We built a 
CNN with two hidden layers and downsampling layers using 
the maximum pooling (Figure 4). The final loss function of 
the network was the cross-entropy function. With the fully 
connected layer, we dropped neurons by the chance of 50% 
to address the problems of overfitting (6). The code used to 
build the neural network and load the dataset is provided in 
section one of the appendix. 

The same neural network was fed with three different 
activation functions: ReLU, Sigmoid, and Tanh. We measured 
the performance of the activation functions in three aspects: 
training time, validation accuracy, and testing metrics 
(accuracy, precision, recall, and F1-score). Each activation 
function was evaluated using the following approach: the 
CNN was run three times, and the mean of the testing metrics 
of the three trials was taken. For the first trial, other than 
the accuracy, we also recorded the training time, training 
accuracy, and validation accuracy.  

After compiling the results, we performed three trials 
to calculate the standard deviation of the accuracies and 
calculated the mean of the accuracies. The standard 

Figure 4: Flow chart of the CNN structure. The schematic shows 
the layers created in the CNN with input and output sizes. The Keras 
Tensorflow module was used to construct the flow chart. From top 
to bottom, the CNN will first receive input in the input layer. The 
information will be processed in the first Conv2D layer. Next, the 
Maxpooling2D layer will downsample the data. After downsampling, 
the information will be passed on to the second Conv2D and 
Maxpooling2D layer. The CNN then has a dropout layer to prevent 
overfitting. Lastly, the information is passed into the flattened layer 
and fully connected layer to eventually get the final classification 
results. 
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deviation was calculated with the Python NumPy module (19). 
We computed the one-way ANOVA test of the groups ReLU, 
Sigmoid, and Tanh. Next, we used Tukey’s HSD test as the 
post-hoc test to perform pairwise comparisons. We used 0.05 
as alpha for the ANOVA test and Tukey’s test. Both tests were 
performed using the Python statsmodel module (20).
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