
15 SEPTEMBER 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

vector machines (3).
In CNNs, there are artificial neurons that simulate the

behaviors of the networks in human brains (4). The network
comprises mainly three sections of layers, the convolution
layers, the pooling layers, and the fully connected layer (3).
In the convolution layers, the network uses a kernel, a grid of
weights that serves to extract features from the input (5). The
weights can be adjusted after training over multiple epochs.
In the convolution layers, the input is processed by element-
wise multiplication with the kernel grid. Thus, the feature can
be extracted from the original input (5). Next, the pooling
layers serve to down-sample the data into smaller dimensions
without losing the general features (5). This process can be
done using techniques such as max-pooling or average-
pooling, where the values are calculated into smaller sizes
(5). The neurons are weighted and interconnected, and the
information of the neurons is processed to the next layer.
Lastly, the information will be passed on to the fully connected
layer as a flattened vector that classifies the results (5).
The network includes a loss function on this last layer that
calculates the prediction error. For instance, soft-max, cross-
entropy, or Euclidean error are examples of loss functions in
ML (3).

Additionally, in CNNs, a problem of overfitting may occur
(6). Overfitting is a problem in which the machine adapts to the
training data too well (6). The units co-adapt with each other to
the extent that they cannot generalize on test data other than
the training set (6). Therefore, when the CNN is used with
unseen data, the performance of the model decreases even
though the performance with seen data can be decent. To
tackle this problem, the method of including dropout layers is
often introduced to the network (6). Dropping out each neuron
with a certain probability creates possible combinations of
the network (6). Every reduced network is called a thinned
network (6). Therefore, training the network becomes training
multiple different thinned networks, with weight sharing as the
weights are the same, reducing the problem of overfitting (6).

Finally, an essential part of CNNs is the activation function.
Before the neurons pass information to the next layer, the
output is modified by an activation function, which often adds
nonlinearity to the network (4). With complex distributions of
the data, choosing a linear function as the activation would
only introduce the network with linear complexity (4). The
network would not be able to deal with images with complex
data systems or data distribution (4). So, the network needs
activation functions to increase the machine’s ability to
process complex information. In reality, the distribution of
more complex data, such as image recognition, can be
sparse, noisy, and skewed (4). Therefore, choosing the wrong
activation function can cause the loss of important trends or
information on the data, which can drastically affect the final

The effect of activation function choice on the
performance of convolutional neural networks

SUMMARY
With the advance of technology, artificial intelligence
(AI) is now applied widely in society. For example,
natural language processing, speech recognition,
and autopilot are all famous examples of how AI is
changing our world. In the study of AI, machine
learning (ML) is a subfield in which a machine learns
to be better at performing certain tasks through
experience. This work focuses on the convolutional
neural network (CNN), a framework of ML, applied to
an image classification task. Specifically, we analyzed
the performance of the CNN as the type of neural
activation function changes. Choosing the right neural
activation function is crucial to prevent the loss of
important trends and increase the efficiency of training
time. Among all the different widely used activation
functions, we hypothesized that a rectified linear unit
(ReLU) would be the most efficient in training time and
attain the highest accuracy on the image recognition
task because ReLU has the advantage of avoiding the
vanishing gradient problem and only requires light
mathematical calculations. Having high accuracy
and efficiency in the task of image classification is
beneficial as this technique can be employed in many
different real-world applications, such as diagnosing
in healthcare, identifying potential threats in security,
or developing an autonomous vehicle. Our results
indicate that when the number of hidden layers is
small, networks employing the ReLU performed
similarly to networks using hyperbolic tangent, and
both networks with ReLU and hyperbolic tangent
outperformed networks using the sigmoid function.

INTRODUCTION
Artificial intelligence (AI) is a popular and powerful

branch of computer science. Machine learning (ML) is a
specific type of AI that focuses on constructing a system that
improves automatically through experience (1). Recently,
with advances in the available online datasets and newly
developed algorithms, ML has progressed significantly in
multiple different fields, including but not limited to health
care, education, finance, and policing (1). In this paper,
we aim to discuss a specific application of ML algorithms:
image recognition. Image recognition is already in use within
our society. Facial recognition, handwriting recognition,
and medical image recognition are a few examples of their
applications (2). ML models are used for 2D image analysis,
and convolutional neural networks (CNNs) outperform other
architectures, such as deep belief networks and support

Shin-Hao Wang1, Eric Sakk2

1Kang Chiao International School, Taipei City, Taiwan
2Department of Computer Science, Morgan State University, Baltimore, Maryland

Article

15 SEPTEMBER 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

accuracy of the ML model. Each point of the dataset can be
valuable and provides much information.

Therefore, in our work, we aim to compare the performance
of the CNN using different activation functions, such as
Sigmoid, Hyperbolic Tangent (Tanh), and Rectified Linear
Unit (ReLU), and benchmark the results in terms of training
time, validation accuracy, testing accuracy, precision, recall,
and F1-Score. We would build on the foundation of CNNs to
determine which activation among ReLU, Tanh, and Sigmoid
was the most suitable for the field of image recognition. We
would thoroughly review what functions to use in image
recognition and other fields related to image recognition, such
as voice recognition.

While most of the existing studies emphasize networks
with multiple layers and parameters (7–9), in this research,
we focus mainly on a CNN with a small number of layers,
aiming to discuss the results of different activation functions
with a relatively small network. For general networks, ReLU
is the most widely used activation function (4). For our
experiment setup, we hypothesized that ReLU would have the
best performance on our image recognition dataset because
it avoids the problem of vanishing gradients and does not
require heavy calculations. The vanishing gradient problem
occurs when the gradient of the loss function is very small,
close to zero, drastically slowing down the learning process
(4). Sigmoid and Tanh have very small derivatives close to
zero when the input is too large or small, while ReLU avoids
this problem. Therefore, we hypothesized that ReLU would
outperform Sigmoid and Tanh (4).

We ran a CNN using Python and TensorFlow, changing
the activation function used in an image recognition task with
three trials. We concluded that ReLU and Tanh performed
similarly on our small CNN model. Even though the training
time taken was slightly less, the advantage of ReLU in
accuracy was not statistically significant. Nonetheless, ReLU
and Tanh performed significantly better than Sigmoid in terms
of training time, testing and validation accuracy, precision,
recall, and F1-score.

The results could also be inferred or extrapolated into
other neural networks requiring activation functions. We
would also analyze processes and verify the existing studies
comparing existing functions’ performance. Our research
would serve as helpful data and conclusions for researchers
in the field of lightweight CNNs. Specifically, our research
could benefit researchers that aim to attain high accuracy
with limited hardware and time, such as for image detection in
auto driving that requires high accuracy within a short amount
of time (10).

RESULTS
We first built the CNN with Python code and changed the

activation functions accordingly to test the results. We ran
the CNN on the Modified National Institute of Standards and
Technology database (MNIST) dataset, which consists of
60,000 28 by 28 pixels images in grayscale. The activation
functions included in this study include ReLU, defined as
f(x)=max(0,x), the Sigmoid function, expressed as ,
and Tanh, represented by . We split the dataset
into training and testing sets. First, we compared the training
time of the three activation functions to evaluate the different
activations. Sigmoid and Tanh functions have similar training
times of about 49 to 50 seconds for each epoch (Figure 1A,

B). On the other hand, ReLU had a slightly lower training time,
taking about 46 to 48 seconds for each epoch (Figure 1C).
As the results show, ReLU had better efficiency in training
the model.

Next, we compared the validation accuracy that was
evaluated when training. Even though Sigmoid and Tanh had
significantly lower validation accuracies at the beginning of
the training epochs, each of them had around 98% to 99%
training accuracy in the last epoch (Figure 2A,B). On the
other hand, ReLU had a high validation accuracy throughout
the 10 epochs (Figure 2C). Additionally, Tanh and ReLU had
slightly better accuracies in the last epoch, with about 99%
compared to Sigmoid’s 98% (Figure 2).

Last, we compared the testing accuracy, precision,

Figure 1: Training time minimized using ReLU function
compared to Tanh and Sigmoid. The CNN is run with Tanh,
Sigmoid, and ReLU on the training set taken from the MNIST dataset
with the Keras TensorFlow module. Training time is obtained with
Keras TensorFlow’s function. Bar graph showing the training time of
the CNN with the A) Tanh function, B) Sigmoid function, and C) ReLU
function for each epoch. Data shown from first trial only.

Figure 2: All three functions’ training and validation accuracy
increase with successive epochs; Sigmoid started with about
90% of validation accuracy while Tanh and ReLU both started
at about 98% validation accuracy in the first epoch. The CNN
is run with Tanh, Sigmoid, and ReLU on the training set taken from
the MNIST dataset with the Keras TensorFlow module. Training and
validation time is obtained with Keras TensorFlow’s function. Line
graph showing the training and validation accuracy with A) Tanh
function, B) Sigmoid function, and C) ReLu function for all epochs.
Data shown from first trial only.

15 SEPTEMBER 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

recall, and F1-score of the three functions (Table 1). Testing
accuracy served as the final evaluation with the test set after
the training was completed. ReLU and Tanh had the best
accuracies above 99%, with ReLU being slightly better by a
margin of 0.07%. Sigmoid performed the worst on the final
accuracy, with only about 98%. For precision, recall, and F1-
score, all three functions have similar values with their test
accuracy; sigmoid had 98% of all the metrics, while ReLU and
Tanh were slightly better with 99%.

To calculate and verify the error of the experiment,
we performed the experiment three times and calculated
the standard deviation of the accuracies of the trials. Tanh
and ReLU had a standard deviation of about 0.00033, and
Sigmoid had a standard deviation of 0.00017.

Additionally, with the data from the three trials of the
experiment, we also performed ANOVA tests on the mean
accuracies of the trials. Since precision, recall, and F1-score
are all similar to the accuracies, we used testing accuracy
as the major metric. We found a significant difference in
accuracy of the three groups (p=6.3 * 10-8, f=750). Therefore,
we performed Tukey’s test as the post-hoc test to do pairwise
comparisons among the groups. We found no significant
difference in testing accuracy between the ReLU and Tanh
functions (p=0.11) (11). On the other hand, we found a
significant difference in accuracy between ReLU and Sigmoid
(p=0.0) and Tanh and Sigmoid (p=0.0) (11).

DISCUSSION
Our results showed that ReLU had similar testing

accuracies with Tanh in our model, and both ReLU and
Tanh performed significantly better than Sigmoid in terms of
testing accuracies. There is a trend of ReLU also being better
in terms of training time, validation accuracy, and F1-score
from our raw data. The Sigmoid function fell behind ReLU
slightly, with a testing accuracy of 98% compared to ReLU’s
99%. Therefore, we concluded that for the MNIST dataset,
the ReLU function is the most efficient function by a narrow
margin. Our results also showed that the MNIST dataset is a
balanced dataset, as the precision, recall, and F1-score are
all consistent with its accuracy. This further highlighted that
the functions would not have the problem of too many false
positive or false negative results (12).

One of the reasons ReLU was the most efficient is that
it avoided the problem of vanishing gradients. This problem
happens when the input is very large or small, and the
gradients of the activation function become infinitely small,
which causes the learning process of utilizing the derivative
to decrease drastically (13). Therefore, non-saturated
nonlinearities generally perform better than saturated ones
(14). The saturated nonlinearities almost behave like a
horizontal line with an extremely small gradient, slowing the

gradient descent process. Sigmoid and Tanh functions are
saturated nonlinearities, while ReLU is not. Therefore, ReLU
avoids this problem as its derivative does not become small
when the input is very large or small. Moreover, Sigmoid’s
derivative ranges from 0 to 0.25, and Tanh’s derivative ranges
from 0 to 1. After multiple layers in the network, the output
might result in infinitely small gradients, also causing the
convergence performance to decrease drastically.

Next, ReLU is computationally lighter than other
exponential-related functions such as Sigmoid and Tanh.
ReLU does not involve any exponential or logistic operations
but simply takes the max of zero and input, as the function
of ReLU is given by the formula f(x)=max(0,x) (4). In the
MNIST dataset, ReLU took 1 to 2 fewer seconds to train per
epoch compared to the exponential functions Sigmoid and
Tanh. In short, ReLU is exponentially lighter than the other
two functions because it doesn’t involve computational-
heavy exponential calculations, and it has bigger gradients
when the input is large. Moreover, since ReLU’s F1 score was
consistent with its accuracy, we verified ReLU didn’t have the
problem of having false positive or false negative results (12).
For the above reasons, we concluded that ReLU was the best
activation function for the MNIST dataset.

However, in our model, ReLU was significantly better
than Tanh. ReLU was only slightly better than Tanh in terms
of accuracy by a margin of 0.07% on the mean of the three
trials (Figure 3). On the other hand, Tanh and ReLU both
performed significantly better in terms of accuracy on the
MNIST dataset than Sigmoid.

The reason why ReLU only had a slim advantage in the
MNIST dataset was likely because our CNN only used a small
number of layers. Even though the ReLU function avoided
vanishing gradient problems and was computationally lighter
than the Tanh function, in our dataset with 28*28-pixel
pictures, we only needed two hidden layers to compute our
results. Therefore, the advantages of the ReLU function did
not optimize the training processes as much as they would
in networks with more than 100 layers. The problem of
vanishing gradients was not as significant in our network with
2 convolution and pooling layers as it would be in a network

Table 1: Performance of the three activation functions with the
test set. The table shows the results of the test accuracy, precision,
recall, and F1-score of the three activation functions. The data
was obtained from the trained network using the Keras Tensorflow
module.

Figure 3: ReLU and Tanh and similarly high testing accuracies
throughout the three trials and mean, while Sigmoid remained
lower than the ReLU and Tanh. The graph shows the accuracies of
the three activation functions with three trials. The rightmost column
shows the mean of the three trials. ReLU and Tanh performed
significantly better than Sigmoid (p<0.05), while ReLU doesn’t
perform significantly better than Tanh (p > 0.05).

15 SEPTEMBER 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

with 100 convolution and pooling layers.
We also observed that Tanh had a better performance

than the Sigmoid function. The Tanh function most likely
performed better than the Sigmoid function because it
had a larger range, from -1 to 1, compared to the Sigmoid
ranging from 0 to 1. If the machine wanted to obtain negative
outputs from the input, it would need extra transformations
on the Sigmoid function to approximate a negative value,
which required extra numbers of neurons and layers. On the
other hand, the Tanh function could already create negative
outputs, so the Tanh function had better accuracy and
training time in our case. With a larger range but maintaining
a similar s-shape, the Tanh function had steeper derivatives
ranging from 0 to 1 compared to Sigmoid’s derivatives
ranging from 0 to 0.25, which made gradient descent more
efficient when converging. Moreover, convergence during the
backpropagation is usually more efficient if the average of the
input variable is close to zero (15). Tanh’s input took negative
and positive values, so its average value was more likely to be
closer to zero compared to Sigmoid’s input, which only took
positive values.

In conclusion, in the MNIST dataset using CNN, ReLU
performed better than the other two functions due to its
advantage in the steepness of the slope and computationally
light operations. However, ReLU did not have a significant
superiority in networks with only a small number of hidden
layers. Additionally, the ReLU and Tanh functions performed
better than the Sigmoid function as it had steeper derivatives
and a wider range of output that optimized the gradient
descent process.

Further research on a similar topic could be done on
datasets that required more hidden layers in the neural
network. For example, medical image classification is a topic
that is more complex in nature, requiring more hidden layers
in CNN. In a 2021 study, Helen and colleagues showed
that to diagnose diabetes using CNN, more than 2 layers
were needed for the network to attain better accuracy on
diagnosing diabetes (16). In experiments with more hidden
layers required, the results could differ from the outcome
of this experiment as the network included more layers
to process the data. ReLU’s advantages in the gradient
descent algorithm could have a bigger impact on accuracy
and efficiency. However, since grayscale handwritten digits in
the MNIST dataset and real-world images are very different
in nature, the outcome of this experiment might not be
generalizable to medical images or other complex datasets.
Nevertheless, our research on small CNNs can serve as a
benchmark of ReLU, Tanh, and Sigmoid’s performance for
further research. Specifically, it can benefit researchers that
aim to attain high accuracy with limited hardware and time,
such as for image detection in auto driving that requires high
accuracy within a short amount of time.

MATERIALS AND METHODS
The MNIST dataset used for this experiment consists

of 60,000 28 by 28 pixels of black and white images of
handwritten digits (17). It was obtained from the TensorFlow
dataset to train and test the model (17). The dataset was split
into a training set and a testing set with a ratio of 8 to 2. The
training set was used to train the network. The testing set was
used to evaluate the result of each function based on its final
accuracy and final loss function.

The TensorFlow package and Python codes were used
to build a CNN and test the performance (18). We built a
CNN with two hidden layers and downsampling layers using
the maximum pooling (Figure 4). The final loss function of
the network was the cross-entropy function. With the fully
connected layer, we dropped neurons by the chance of 50%
to address the problems of overfitting (6). The code used to
build the neural network and load the dataset is provided in
section one of the appendix.

The same neural network was fed with three different
activation functions: ReLU, Sigmoid, and Tanh. We measured
the performance of the activation functions in three aspects:
training time, validation accuracy, and testing metrics
(accuracy, precision, recall, and F1-score). Each activation
function was evaluated using the following approach: the
CNN was run three times, and the mean of the testing metrics
of the three trials was taken. For the first trial, other than
the accuracy, we also recorded the training time, training
accuracy, and validation accuracy.

After compiling the results, we performed three trials
to calculate the standard deviation of the accuracies and
calculated the mean of the accuracies. The standard

Figure 4: Flow chart of the CNN structure. The schematic shows
the layers created in the CNN with input and output sizes. The Keras
Tensorflow module was used to construct the flow chart. From top
to bottom, the CNN will first receive input in the input layer. The
information will be processed in the first Conv2D layer. Next, the
Maxpooling2D layer will downsample the data. After downsampling,
the information will be passed on to the second Conv2D and
Maxpooling2D layer. The CNN then has a dropout layer to prevent
overfitting. Lastly, the information is passed into the flattened layer
and fully connected layer to eventually get the final classification
results.

15 SEPTEMBER 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

deviation was calculated with the Python NumPy module (19).
We computed the one-way ANOVA test of the groups ReLU,
Sigmoid, and Tanh. Next, we used Tukey’s HSD test as the
post-hoc test to perform pairwise comparisons. We used 0.05
as alpha for the ANOVA test and Tukey’s test. Both tests were
performed using the Python statsmodel module (20).

Received: March 18, 2022
Accepted: May 1, 2023
Published: September 15, 2023

REFERENCES
1. Jordan, Michael I., and Tom M. Mitchell. "Machine learning:

Trends, perspectives, and prospects." Science, vol. 349,
no. 6245, Jul. 2015, doi:10.1126/science.aaa8415.

2. Ker, Justin, et al. "Deep learning applications in medical
image analysis." IEEE Access, vol. 6, 29 Dec. 2017, pp.
9375-9389. doi:10.1109/ACCESS.2017.2788044

3. LeCun, Yann, et al. "Gradient-based learning applied to
document recognition." Proceedings of the IEEE, vol. 86,
no. 11, Nov. 1998, pp. 9375-9389. doi:10.1109/5.726791

4. Sharma, Siddartha, et al. "Activation functions in neural
networks." International Journal of Engineering Applied
Sciences and Technology, vol. 4, no. 12, 2020, pp. 310-
316.

5. Gu, Jiuxiang, et al. "Recent Advances in Convolutional
Neural Networks." Pattern Recognition, vol. 77, 2018, pp.
354-377. doi.org10.1016/j.patcog.2017.10.013.

6. Alzubaidi, Laith, et al. “Review of Deep Learning:
Concepts, CNN Architectures, Challenges, Applications,
Future Directions.” Journal of Big Data, vol. 8, no. 1, 2021,
doi:10.1186/s40537-021-00444-8.

7. Dryden, Nikoli, et al. “Channel and Filter Parallelism
for Large-Scale CNN Training.” Proceedings of the
International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019,
doi:10.1145/3295500.3356207.

8. S. Hershey et al., "CNN architectures for large-scale
audio classification," 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2017, pp.131-135. doi: 10.1109/ICASSP.2017.7952132.

9. Li, Liu, et al. “Attention Based Glaucoma Detection: A
Large-Scale Database and CNN Model.” 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019, doi:10.1109/cvpr.2019.01082.

10. Ma, Ningning, et al. “ShuffleNet V2: Practical Guidelines
for Efficient CNN Architecture Design.” Proceedings of the
European Conference on Computer Vision (ECCV), 2018,
pp. 122-138. doi:10.1007/978-3-030-01264-9_8.

11. Cuesta-Albertos, J. A., and M. Febrero-Bande. “A Simple
Multiway ANOVA for Functional Data.” TEST, vol. 19, no.
3, 2010, pp. 537-557. doi:10.1007/s11749-010-0185-3.

12. Goutte, Cyril, and Eric Gaussier. “A Probabilistic
Interpretation of Precision, Recall and F-Score, with
Implication for Evaluation.” Lecture Notes in Computer
Science, vol. 3408, 2005, pp. 345-359. doi:10.1007/978-
3-540-31865-1_25.

13. Hochreiter, Sepp. “The Vanishing Gradient Problem during
Learning Recurrent Neural Nets and Problem
Solutions.” International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, vol. 6, no. 2, 1998, pp.
107-116. doi:10.1142/s0218488598000094.

14. Srivastava, Nitish, et al. "Dropout: a simple way to prevent
neural networks from overfitting." Journal of Machine
Learning Research, vol. 15, 2014, pp.1929-1958.

15. LeCun, Yann, et al. “Efficient Backprop.” Lecture
Notes in Computer Science, vol. 1524, 1998, pp. 9-50.
doi:10.1007/3-540-49430-8_2.

16. Helen Josephine, V L, et al. “Impact of Hidden Dense
Layers in Convolutional Neural Network to Enhance
Performance of Classification Model.” IOP Conference
Series: Materials Science and Engineering, vol. 1131, no.
1, 2021, doi:10.1088/1757-899x/1131/1/012007.

17. LeCun, Yann, et al. ‘MNIST Handwritten Digit Database.’
ATT Labs [Online]. Yann.Lecun.Com/Exdb/Mnist,
Accessed 21 Jan. 2023.

18. Abadi, Martín, et al. "TensorFlow: Large-Scale Machine
Learning on Heterogeneous Distributed Systems." ArXiv,
2016, arXiv:1603.04467.

19. Harris, Charles R., et al. ‘Array Programming with NumPy.’
Nature, vol. 585, no. 7825, Springer Science and Business
Media LLC, Sept. 2020, pp. 357-362, doi.org10.1038/
s41586-020-2649-2.

20. Seabold, Skipper, et al. "statsmodels: Econometric and
statistical modeling with python." 9th Python in Science
Conference. 2010.

Copyright: © 2023 Wang and Sakk. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/). This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

15 SEPTEMBER 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

15 SEPTEMBER 2023 | VOL 6 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

15 SEPTEMBER 2023 | VOL 6 | 8Journal of Emerging Investigators • www.emerginginvestigators.org

15 SEPTEMBER 2023 | VOL 6 | 9Journal of Emerging Investigators • www.emerginginvestigators.org

