
3 JULY 2024 | VOL 7 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

Article

these metrics into a binary successful/not successful result,
instead of predicting a metric already defined in their scra-
pped data. This methodology, while useful for training pur-
poses and simplifying their success equation, may not be
entirely accurate in its predictions of actual market success,
as the paper arbitrarily categorized successful apps as wi-
thin the 95th percentile of ratings and installs. This percentile
was chosen to address clusters of high installs from deve-
lopers like Google, Facebook, and Snapchat, but somewhat
blurs the line between semi-successful apps with hundreds
of thousands of installs and mega-popular apps with installs
in the hundreds of millions. Furthermore, the calculation of
success within this paper would determine an app successful
if it had over 50000 installs, a requirement that, while relevant
in 2014, is outdated in more recent times, as app downloads
have increased by 285% from 2015 to 2023 (4). The paper
also utilized a linear regression for determining average app
ratings but had limited predictive power.
 This paper aims to provide a clearer way for developers to
predict the rating of their app, as well as highlight critical areas
to prioritize to maximize rating. These goals can be achieved
through classification models, which are models that quintile
each app into discrete rating labels, ranging from 1 to 5 given
their attributes. After these classification models are trained,
they can be used to predict the rating of new, unseen apps, or
can return the relative weights of each attribute in determining
rating. Since these models would be used by developers as
a general predictor of the rating of their app, a continuous
rating result that a regression model would return is unne-
cessary. Furthermore, although a neural net may prove more
accurate than classification, we wished to retain the interpre-
tability of our input classes (5). Instead, we used the Random
Forest (RF), Support Vector Machine (SVM), and K-Nearest
Neighbors (KNN) classifiers (6-8). These models are easily
implemented and relatively intuitive, requiring less knowledge
than other models, along with returning accurate predictions
(9). For this paper, the KNN classifier predicted the rating of
a data point with its “k”-nearest data points within the fea-
ture space, “k” being a hyperparameter; the SVM classifier
used a hyperplane to separate different ratings, maximizing
the distance between support vectors; and our last model,
the RF classifier, created and combined decision trees using
subsets of our data to make a generalized prediction of rating.
These three individual models were used in the hopes that
comparing them would lead to higher final accuracy, as each
model has a unique architecture and methodology. We found
that review count, days since the last update of the app, and
storage size were the most influential attributes. Using this in-
formation, app developers can emphasize these key factors,
using their estimated rating to locate areas of improvement
for their apps (10).

Can the attributes of an app predict its rating?

SUMMARY
When Google Play Store developers first publish their
apps, it may seem that their success comes from the
roll of a dice. Ways to improve the rating of their app
may seem impossible to glean, with many relying on
blind guessing to determine ways forward. In this
paper, we hypothesize that the attributes of a Google
Play Store apps, including maturity level, install count,
and price, can estimate its rating, or stars out of five.
We believed that comparing three models trained
on these attributes, each with unique architectures,
would lead to a higher final accuracy than one. By
using Random Forest (RF), Support Vector Machine
(SVM), and K-Nearest Neighbors (KNN) classifiers,
we found that the attributes of an app can predict
its rating, with review count, date of last update, and
storage size being the most influential attributes.
During modeling, we found that the RF classifier most
successfully predicted the rating of an app, getting
79.3% of predictions correct. These results suggest
a connection between the rating of an app and its
attributes. The results from this paper can inform app
developers and investors about improvement paths
to increase the rating of their app, thereby increasing
its success.

INTRODUCTION
 Many developers turn to the Google Play Store when mar-
keting their mobile apps. The store is where Android users
interact and install these apps, which include newspapers,
video games, and streaming services (1). Success on the
Google Play Store, while subjective, is primarily determined
by app rating, which many developers work towards maximiz-
ing. Benefits of increased app ratings include improving first
impressions and gaining visibility to potential users, increas-
ing usage (2). Better-rated apps also have higher chances of
being featured on the Google Play Store’s front page, further
increasing its audience. For developers, controlling the rating
of their app is nearly impossible, since it’s entirely user-con-
trolled and is difficult to predict. How they should improve their
app to influence their rating is also hard to ascertain.
 A 2014 paper predicted the success of Google Play Store
apps using a combination of install count and a rating out of
five using a generalized linear model (3). However, this mo-
del did not implement a more holistic range of app attributes,
instead opting to choose two more readily interpretable attri-
butes. This model used a self-proposed equation to combine

Nicolas Feng1, Emily Ryu2

1 Central Bucks HS South, Warrington, Pennsylvania
2 Cornell University, Ithaca, New York

3 JULY 2024 | VOL 7 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/23-033

RESULTS
 We aimed to provide developers pathways to improve
their Google Play Store apps. This was done through predic-
ting the rating of Google Play Store apps using their attributes
and classificatiton models. The data set used in this paper
was taken from Kaggle.com and scraped from the Google
Play Store in 2018 (11). The data set contains the information
of 10,841 apps, consisting of a variety of attributes (Table 1).
 We first plotted the distribution of the rating attribute within
our data set to obtain some preliminary insight (Figure 1).
We found that the attribute followed a left-skewed distribution,
with a mean of 4.192, a median of 4.3, a mode of 4.4, and a
standard deviation of 0.515. The distribution suggested a typi-
cal real-world scenario, further supported by the fact that the
dataset scraped all apps from the Google Play Store, rather
than a subset. Before using models to find the attributes that
affect rating the most, we also used a pairplot, which visu-
alizes the relationships between each attribute. We omitted
attributes that would require one-hot encoding (a process that
converts non-ordinal categorical variables to a 2-D binary ar-
ray), namely Category and Content Rating, as they contain
large 2-D binary arrays unsuitable for plotting. The kernel
density estimation graphs show the spread and correlation
coefficients of each relationship (Figure 2). Most graphs bet-
ween various attributes and rating grouped around a rating of
~4.2, pointing to the mean rating of our dataset. These graphs
also extended along the vertical line at ratings ≈ 4.2, explai-
ning some of the low correlation between each attribute and
rating – since there are multiple attribute values with respect
to a rating of ~4.2, they have low predictive power. This can
be seen in each comparison’s correlation coefficient, where
Reviews, Last Updated, and Name Length had the largest co-
efficients of only 0.2098, -0.1428 (a negative coefficient points
towards an inverse relationship), and 0.1383.
 However, this pairplot, while useful for finding initial trends
between two attributes, failed to capture the interactions bet-
ween all attributes for each app. This was instead done by
training three classifiers—testing our three classifiers in a
validation set 20% the size of our training set, we found that
our KNN model had an accuracy of 0.767, the SVM had an
accuracy of 0.768, and the RF had an accuracy of 0.793. To
further explore the accuracy of our most accurate and most
bias-resistant model, the random forest classifier, we analy-
zed its classification metrics, showing the high precision, but
low recall, of ratings 1 to 3, meaning the model had accurate
predictions for these ratings, but failed to identify most posi-

tive instances (Figure 3). To assess the overall effectiveness
of the RF model’s predictions for these ratings, we measured
its F1 score—the harmonic mean of precision and recall—
which was low for these ratings. However, the high/moderate
precision and recall of ratings 4 and 5 resulted in a high/mo-
derate F1 score. These results, in summary, indicate that our
random forest classifier was effective in predicting many apps
with a rating of 4, most apps with a rating of 5, and some apps
with a rating between 1 and 3. These results may be partial-
ly due to the bias towards higher ratings, further confirmed
by the distribution of the model‘s test data (Figure 4). This
could be a factor of the contrasting F1 scores between ratings
1-3 and ratings 4-5, the latter having a higher number of data
points and training data, resulting in a higher F1 score.
 After analyzing the accuracy of our RF, we found the im-
portance of each input class in determining rating, to increase
our model’s interpretability. We found the Gini-impurity-based
feature importances within our RF classifier—the more im-
portant an attribute, the more it would decrease the impurity,
or how often a random data point would be incorrectly clas-
sified. Each attribute’s importance scores are then averaged
and normalized, summing to 1 (or 100%), allowing us to in-
terpret the relative impact of each attribute within the model.
These showed that most individual attributes had little impor-
tance in determining the classification of an app (Figure 5).
Individual values of Category and Content Rating had limited
effects on the model’s output, consisting of 33 and 6 unique
values, respectively, and having weights of less than 0.015.
The Reviews attribute had the highest effect on the random
forest model’s predictions of rating, having 0.06 greater
weight than the second-most significant attribute, Category.
The attributes Last Updated (days since last update), Size,
App (length of app name), Installs, and Android Ver all had
similar weights of 0.112 0.031. However, Price had a lower
weight of 0.017, indicating the lowest effect on the model’s
predictions.

DISCUSSION
 We hypothesized that the rating of an app can be estima-
ted with its attributes, which provides a clearer way for deve-
lopers to predict the rating of their app, as well as highlights
critical areas to prioritize during app development to maximi-
ze rating. We used three classification models, with our RF
model being the most accurate with an accuracy of 0.793,

Table 1: App features and their descriptions. Ver = Version.

Figure 1: Rating frequency distribution. Occurrences of certain
ratings with a total of 9366 apps. Our data was collected from a
Kaggle data set on Google App Store apps. rating follows a left-
skewed distribution with a mean of 4.192, a median of 4.3, a mode of
4.4, and a standard deviation of 0.515.

3 JULY 2024 | VOL 7 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/23-033

possibly due to its higher tolerance to biased datasets than
SVM or KNN models. The model had high/moderate preci-
sion but low recall for ratings 1-3, and high precision and high
recall for ratings 4-5. We also determined that Reviews, Last
Update, and Size were the most important attributes. Through
these results, we concluded that the rating of an app can be
estimated through its attributes and that developers should
focus on boosting Reviews, having more frequent updates,
and reducing app size to maximize rating. Many have con-
ducted similar experiments, and from the same data set we
used, there have been multiple projects on graphing trends
and similarities (12, 13). Rather than only analyzing the re-
lationships between two attributes of an app, or comparing
one attribute to rating, however, we aimed to provide a ho-
listic view of the effects of all concurrent attributes on rating
through training classification models.
 Through our research, we determined that the RF classi-
fier had a higher accuracy than the KNN and SVM classifiers.
Having an overall accuracy of 0.793, this model was gene-
rally successful in predicting higher ratings, though struggled
with the recall of lower ratings. Although Random Forest mo-

dels have a high tolerance for biased datasets in comparison
to Support Vector Machines and K-Nearest Neighbors, the
small number of lower-rated apps may have been too small
for adequate training. rating
 The main limiting factor of the study was data—the datas-
et we used was heavily skewed towards apps with a 4+ rating,
making our models lean more towards predicting those apps
than equally representing all ratings A more suitable dataset
would, ideally, include a more balanced pool of data points,
as well as attributes specifying any bugs, load-in times, and
popups for a more granular look into in-app variables. Fur-
thermore, more precise data on points like installs would be
beneficial. However, this dataset contains categories relevant
to other studies—further analysis of the data could predict
several variables, such as the optimal name for an app in a
certain genre and a comparison of the size of an app and its
install rate. Taken together, we conclude that the attributes of
an app, mainly Price, Installs, and Genre, allow for the pre-

Figure 2: Pair plot of all attributes including respective
correlation coefficients. Comparisons between each app attribute
(omitting variables cleaned using one-hot encoding) shown as
kernel density estimate plots (N=8). Individual relationships show
weak linear correlations (which are calculated using the Pearson
correlation coefficient) between different pairings, the magnitudes of
which lay between ~0.02 and 0.21.

Figure 3: Random forest classification metrics. Random forest
model’s classification metrics (precision, recall, and F1 score) for
each rating (N=5). Precision shows how often the model correctly
rates an app (proportion of true positives to true and false positives),
whereas recall shows how often the model correctly identifies rating
out of all similar ratings (proportion of true positives to true positives
and false negatives). F1 score is a harmonic mean of these two
metrics.

Figure 4: Random forest rating supports. Occurrences of each
rating within the random forest’s testing data (data points=1874),
with each rating as a different color (N=5). Supports have similar
distributions to training data (data points=7492) as well as total app
distribution (data points=9366).

Figure 5: Random forest classifier’s relative attribute weights.
Relative importance of each attribute (N=7). with the categorical
attributes Category and Content Rating omitted (attribute
importance<0.015). The categorical attributes Category and Content
Rating were omitted, as each category and content rating (33 and
6, respectively) had an attribute importance < 0.015. These feature
importances were found using Gini impurity—the more important
an attribute, the more it would decrease the impurity, or how often
a random data point would be incorrectly classified. They are then
averaged and normalized, summing to 1 (or 100%), allowing for
relativistic interpretation.

3 JULY 2024 | VOL 7 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/23-033

diction of the rating of an app. The results of this paper can
impact the decisions of app developers looking to optimize
and predict the rating of their app—from what attributes to
prioritize their development, to predicting the trajectory of
their app, our paper can provide insights into the creation of a
popular Google Play Store app.

MATERIALS AND METHODS
Data Exploration and Cleaning
 The data set used in this paper was taken from Kaggle.
com and was scraped from the Google Play Store in 2018 and
contains the info for 10,841 apps within 14 attributes (Table
1) (11). After cleaning, every attribute except for Type, Genre,
and Current Ver were used. Type, while able to be converted
into numerical values, is less accurate than Price. Although
Genre is more specific than Category, we felt that Category
would be more applicable to developers, as apps compete in
broader, app-wide categories rather than niche sub-genres.
We also did not include Current Ver since it is determined by
the app developer and is entirely subjective.
 We began cleaning the data by removing all apps with
NaN ratings, as well as removing improperly formatted
data points. For Size, 17% of all values were listed as “Var-
ies with device” —instead of removing a significant part of
our data set, we opted to convert them to the average size
of the other apps to prevent additional bias. For App name,
we decided to convert it to “name length”, as wordier names
are less catchy and harder to type into search bars, reducing
the visibility of the app. For Category and Content Rating, we
used one-hot encoding to convert their names to numerical
IDs, each a 2-D integer array that prevents natural ordering
(1, 2, 3, …) which could result in falsely perceived correla-
tions. For Last Updated, we converted the attribute to Days
Since Final Update, with 0 equal to the latest update within
the dataset, increasing by 1 for each day earlier. Finally, we
converted Android Ver using a similar process to cleaning
Size—14% of the values were listed as “Varies with device”,
so they were converted to the median version, as Android Ver
contains discrete values rather than Size’s continuous values.

Exploratory Data Analysis
 All analyses were done in Python version 3.9.12 using the
pandas, Matplotlib, Seaborn, and Scikit-learn packages (14-
18).
 To analyze the distribution of rating, we used the Matplotlib
interface Pyplot to graph ratings against their occurrences in a
bar graph (Figure 1). Then, to find the relation between ratings
and other app attributes, we used a pairplot from the Seaborn
library. Attributes cleaned using one-hot encoding, namely
Category and Content Rating, were not included (Figure 2).

Model Fitting
 After concatenating all our usable attributes, we used a
MinMaxScalar from Scikit-learn to standardize the data into
a range of 0 to 1. Afterward, we split the data into an 80-20
training and testing set for our models. Because our classi-
fiers are predicting rating, we decided to fit the attribute into 5
buckets through flooring. We chose to floor rating due to two
reasons—firstly, app developers hoping to meet rating goals
would benefit from a more pessimistic outlook. Secondly, we
believe that a perfect 5 rating carries more credibility than a
4.5 or 4.6, so we wanted to preserve that distinction.

 Before training our models, we first performed grid search-
es to find the optimal model parameters. Starting with our
KNN model, we found the optimal amount of “k” neighbors to
be 50. The grid search for our SVM and RF models confirmed
their default parameters, but due to the random forest model’s
resistance to overfitting, we set its “n_estimators” parameter
to an arbitrarily high value of 1000. After fitting the training
data, the models had the following accuracies: Random For-
est—0.793, Support Vector Machine—0.768, and K-Nearest
Neighbors—0.767. Instead of pursuing an analysis of each
model, we decided that sufficient knowledge would be gained
from an analysis of just our highest performing model, the
random forest classifier, as it better handles overfitting and
biased datasets than the other two classifiers.

Received: February 11, 2023
Accepted: September 13, 2023
Published: July 3, 2024

REFERENCES
1. “How Google Play Works.” Google Play, 2022. play.

google/howplayworks
2. Bhandari, Aparajita and Sara Bimo. “Why’s Everyone on

TikTok Now? The Algorithmized Self and the Future of
Self-Making on Social Media.” Social Media + Society, 22
Mar. 2022. https://doi.org/10.1177/20563051221086241

3. Tuckerman, C.J. “Predicting mobile application success.”
2014. cs229.stanford.edu/proj2014/Cameron%20Tucker-
man,%20Predicting%20Mobile%20Application%20Suc-
cess.pdf

4. Iqbal, Mansoor. “App Download Data (2023).” Business of
Apps, 2 May 2023. www.businessofapps.com/data/app-
statistics

5. Blouin, Lou. “AI’s mysterious ‘black box’ problem, ex-
plained.” University of Michigan-Dearborn, 6 Mar. 2023.
umdearborn.edu/news/ais-mysterious-black-box-prob-
lem-explained

6. Breiman, L. “Random Forests.” Machine Learn-
ing, vol. 45, Oct. 2001, pp. 5-32. https://doi.
org/10.1023/A:1010933404324

7. Cortes, C. and Vapnik, V. “Support-Vector Networks.”
Machine Learning, vol. 20(3), pp. 273–297. https://doi.
org/10.1007/BF00994018

8. Peterson, Leif. “K-Nearest Neighbor.” Scholarpedia,
2009. https://doi.org/10.4249/scholarpedia.1883

9. Boateng, Ernest, et al. “Basic Tenets of Classification Al-
gorithms K-Nearest Neighbor, Support Vector Machine,
Random Forest, and Neural Network: A Review.” Journal
of Data Analysis and Information Processing, vol. 8, pp.
341-357. https://doi.org/10.4236/jdaip.2020.84020

10. Pinheiro, Mariana, et al. “Predictors of the Number of In-
stalls in Psychiatry Smartphone Apps: Systematic Search
on App Stores and Content Analysis.” JMIR Publications,
vol. 6, no. 11, Nov. 2019. https://doi.org/10.2196/15064

11. Gupta, Lavanya. “Google Play Store Apps.” 2018. Kag-
gle. www.kaggle.com/datasets/lava18/google-play-store-
-apps

12. “How to get “High” rating on Play Store.” Kaggle, 29 Sep.
2018. www.kaggle.com/code/tanetboss/how-to-get-high-
rating-on-play-store

13. Gupta, Lavanya. “All that you need to know about the
Android market.” Kaggle, 18 Sep. 2018. www.kaggle.

https://doi.org/10.1177/20563051221086241
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/BF00994018
https://doi.org/10.1007/BF00994018
https://doi.org/10.4249/scholarpedia.1883
https://doi.org/10.4236/jdaip.2020.84020
https://doi.org/10.2196/15064

3 JULY 2024 | VOL 7 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

https://doi.org/10.59720/23-033

com/code/lava18/all-that-you-need-to-know-about-the-
android-market

14. Rossum, Guido, et al. “Python Reference Manual.” As-
sociation for Computing Machinery, 1995. dl.acm.org/doi/
abs/10.5555/869369

15. (15) McKinney, Wes. “Data Structures for Statistical Com-
puting in Python.” Proceedings of the 9th Python in Sci-
ence Conference, vol. 445, no. 1, 1 Nov. 2010. confer-
ence.scipy.org/proceedings/scipy2010/pdfs/mckinney.pdf

16. Hunter, John. “Matplotlib: A 2D Graphics Environ-
ment”, Computing in Science & Engineering, vol. 9, no.
3, pp. 90-95, May/Jun. 2007. https://doi.org/10.1109/
MCSE.2007.55

17. Waskom, Michael. “Seaborn: Statistical Data Visualiza-
tion.” Journal of Open Source Software, 6 Apr. 2021.
https://doi.org/10.21105/joss.03021

18. Pedregosa, Fabian, et al. “Scikit-learn: Machine Learn-
ing in Python.” Journal of Machine Learning Re-
search, vol. 12, Nov. 2011, pp. 2825-2830. dl.acm.org/
doi/10.5555/1953048.2078195

Copyright: © 2024 Feng and Ryu. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/4.0/). This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.21105/joss.03021
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html
https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html

