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these metrics into a binary successful/not successful result, 
instead of predicting a metric already defined in their scra-
pped data. This methodology, while useful for training pur-
poses and simplifying their success equation, may not be 
entirely accurate in its predictions of actual market success, 
as the paper arbitrarily categorized successful apps as wi-
thin the 95th percentile of ratings and installs. This percentile 
was chosen to address clusters of high installs from deve-
lopers like Google, Facebook, and Snapchat, but somewhat 
blurs the line between semi-successful apps with hundreds 
of thousands of installs and mega-popular apps with installs 
in the hundreds of millions. Furthermore, the calculation of 
success within this paper would determine an app successful 
if it had over 50000 installs, a requirement that, while relevant 
in 2014, is outdated in more recent times, as app downloads 
have increased by 285% from 2015 to 2023 (4). The paper 
also utilized a linear regression for determining average app 
ratings but had limited predictive power.
 This paper aims to provide a clearer way for developers to 
predict the rating of their app, as well as highlight critical areas 
to prioritize to maximize rating. These goals can be achieved 
through classification models, which are models that quintile 
each app into discrete rating labels, ranging from 1 to 5 given 
their attributes. After these classification models are trained, 
they can be used to predict the rating of new, unseen apps, or 
can return the relative weights of each attribute in determining 
rating. Since these models would be used by developers as 
a general predictor of the rating of their app, a continuous 
rating result that a regression model would return is unne-
cessary. Furthermore, although a neural net may prove more 
accurate than classification, we wished to retain the interpre-
tability of our input classes (5). Instead, we used the Random 
Forest (RF), Support Vector Machine (SVM), and K-Nearest 
Neighbors (KNN) classifiers (6-8). These models are easily 
implemented and relatively intuitive, requiring less knowledge 
than other models, along with returning accurate predictions 
(9). For this paper, the KNN classifier predicted the rating of 
a data point with its “k”-nearest data points within the fea-
ture space, “k” being a hyperparameter; the SVM classifier 
used a hyperplane to separate different ratings, maximizing 
the distance between support vectors; and our last model, 
the RF classifier, created and combined decision trees using 
subsets of our data to make a generalized prediction of rating. 
These three individual models were used in the hopes that 
comparing them would lead to higher final accuracy, as each 
model has a unique architecture and methodology. We found 
that review count, days since the last update of the app, and 
storage size were the most influential attributes. Using this in-
formation, app developers can emphasize these key factors, 
using their estimated rating to locate areas of improvement 
for their apps (10).

Can the attributes of an app predict its rating?

SUMMARY
When Google Play Store developers first publish their 
apps, it may seem that their success comes from the 
roll of a dice. Ways to improve the rating of their app 
may seem impossible to glean, with many relying on 
blind guessing to determine ways forward. In this 
paper, we hypothesize that the attributes of a Google 
Play Store apps, including maturity level, install count, 
and price, can estimate its rating, or stars out of five. 
We believed that comparing three models trained 
on these attributes, each with unique architectures, 
would lead to a higher final accuracy than one. By 
using Random Forest (RF), Support Vector Machine 
(SVM), and K-Nearest Neighbors (KNN) classifiers, 
we found that the attributes of an app can predict 
its rating, with review count, date of last update, and 
storage size being the most influential attributes. 
During modeling, we found that the RF classifier most 
successfully predicted the rating of an app, getting 
79.3% of predictions correct. These results suggest 
a connection between the rating of an app and its 
attributes. The results from this paper can inform app 
developers and investors about improvement paths 
to increase the rating of their app, thereby increasing 
its success.

INTRODUCTION
 Many developers turn to the Google Play Store when mar-
keting their mobile apps. The store is where Android users 
interact and install these apps, which include newspapers, 
video games, and streaming services (1). Success on the 
Google Play Store, while subjective, is primarily determined 
by app rating, which many developers work towards maximiz-
ing. Benefits of increased app ratings include improving first 
impressions and gaining visibility to potential users, increas-
ing usage (2). Better-rated apps also have higher chances of 
being featured on the Google Play Store’s front page, further 
increasing its audience. For developers, controlling the rating 
of their app is nearly impossible, since it’s entirely user-con-
trolled and is difficult to predict. How they should improve their 
app to influence their rating is also hard to ascertain.
 A 2014 paper predicted the success of Google Play Store 
apps using a combination of install count and a rating out of 
five using a generalized linear model (3). However, this mo-
del did not implement a more holistic range of app attributes, 
instead opting to choose two more readily interpretable attri-
butes. This model used a self-proposed equation to combine 
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RESULTS
 We aimed to provide developers pathways to improve 
their Google Play Store apps. This was done through predic-
ting the rating of Google Play Store apps using their attributes 
and classificatiton models. The data set used in this paper 
was taken from Kaggle.com and scraped from the Google 
Play Store in 2018 (11). The data set contains the information 
of 10,841 apps, consisting of a variety of attributes (Table 1). 
 We first plotted the distribution of the rating attribute within 
our data set to obtain some preliminary insight (Figure 1). 
We found that the attribute followed a left-skewed distribution, 
with a mean of 4.192, a median of 4.3, a mode of 4.4, and a 
standard deviation of 0.515. The distribution suggested a typi-
cal real-world scenario, further supported by the fact that the 
dataset scraped all apps from the Google Play Store, rather 
than a subset. Before using models to find the attributes that 
affect rating the most, we also used a pairplot, which visu-
alizes the relationships between each attribute. We omitted 
attributes that would require one-hot encoding (a process that 
converts non-ordinal categorical variables to a 2-D binary ar-
ray), namely Category and Content Rating, as they contain 
large 2-D binary arrays unsuitable for plotting. The kernel 
density estimation graphs show the spread and correlation 
coefficients of each relationship (Figure 2). Most graphs bet-
ween various attributes and rating grouped around a rating of 
~4.2, pointing to the mean rating of our dataset. These graphs 
also extended along the vertical line at ratings ≈ 4.2, explai-
ning some of the low correlation between each attribute and 
rating – since there are multiple attribute values with respect 
to a rating of ~4.2, they have low predictive power. This can 
be seen in each comparison’s correlation coefficient, where 
Reviews, Last Updated, and Name Length had the largest co-
efficients of only 0.2098, -0.1428 (a negative coefficient points 
towards an inverse relationship), and 0.1383.
 However, this pairplot, while useful for finding initial trends 
between two attributes, failed to capture the interactions bet-
ween all attributes for each app. This was instead done by 
training three classifiers—testing our three classifiers in a 
validation set 20% the size of our training set, we found that 
our KNN model had an accuracy of 0.767, the SVM had an 
accuracy of 0.768, and the RF had an accuracy of 0.793. To 
further explore the accuracy of our most accurate and most 
bias-resistant model, the random forest classifier, we analy-
zed its classification metrics, showing the high precision, but 
low recall, of ratings 1 to 3, meaning the model had accurate 
predictions for these ratings, but failed to identify most posi-

tive instances (Figure 3). To assess the overall effectiveness 
of the RF model’s predictions for these ratings, we measured 
its F1 score—the harmonic mean of precision and recall—
which was low for these ratings. However, the high/moderate 
precision and recall of ratings 4 and 5 resulted in a high/mo-
derate F1 score. These results, in summary, indicate that our 
random forest classifier was effective in predicting many apps 
with a rating of 4, most apps with a rating of 5, and some apps 
with a rating between 1 and 3. These results may be partial-
ly due to the bias towards higher ratings, further confirmed 
by the distribution of the model‘s test data (Figure 4). This 
could be a factor of the contrasting F1 scores between ratings 
1-3 and ratings 4-5, the latter having a higher number of data 
points and training data, resulting in a higher F1 score.
 After analyzing the accuracy of our RF, we found the im-
portance of each input class in determining rating, to increase 
our model’s interpretability. We found the Gini-impurity-based 
feature importances within our RF classifier—the more im-
portant an attribute, the more it would decrease the impurity, 
or how often a random data point would be incorrectly clas-
sified. Each attribute’s importance scores are then averaged 
and normalized, summing to 1 (or 100%), allowing us to in-
terpret the relative impact of each attribute within the model. 
These showed that most individual attributes had little impor-
tance in determining the classification of an app (Figure 5). 
Individual values of Category and Content Rating had limited 
effects on the model’s output, consisting of 33 and 6 unique 
values, respectively, and having weights of less than 0.015. 
The Reviews attribute had the highest effect on the random 
forest model’s predictions of rating, having 0.06 greater 
weight than the second-most significant attribute, Category. 
The attributes Last Updated (days since last update), Size, 
App (length of app name), Installs, and Android Ver all had 
similar weights of 0.112  0.031. However, Price had a lower 
weight of 0.017, indicating the lowest effect on the model’s 
predictions.

DISCUSSION 
 We hypothesized that the rating of an app can be estima-
ted with its attributes, which provides a clearer way for deve-
lopers to predict the rating of their app, as well as highlights 
critical areas to prioritize during app development to maximi-
ze rating. We used three classification models, with our RF 
model being the most accurate with an accuracy of 0.793, 

Table 1: App features and their descriptions. Ver = Version.

Figure 1: Rating frequency distribution. Occurrences of certain 
ratings with a total of 9366 apps. Our data was collected from a 
Kaggle data set on Google App Store apps. rating follows a left-
skewed distribution with a mean of 4.192, a median of 4.3, a mode of 
4.4, and a standard deviation of 0.515.
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possibly due to its higher tolerance to biased datasets than 
SVM or KNN models. The model had high/moderate preci-
sion but low recall for ratings 1-3, and high precision and high 
recall for ratings 4-5. We also determined that Reviews, Last 
Update, and Size were the most important attributes. Through 
these results, we concluded that the rating of an app can be 
estimated through its attributes and that developers should 
focus on boosting Reviews, having more frequent updates, 
and reducing app size to maximize rating. Many have con-
ducted similar experiments, and from the same data set we 
used, there have been multiple projects on graphing trends 
and similarities (12, 13). Rather than only analyzing the re-
lationships between two attributes of an app, or comparing 
one attribute to rating, however, we aimed to provide a ho-
listic view of the effects of all concurrent attributes on rating 
through training classification models.
 Through our research, we determined that the RF classi-
fier had a higher accuracy than the KNN and SVM classifiers. 
Having an overall accuracy of 0.793, this model was gene-
rally successful in predicting higher ratings, though struggled 
with the recall of lower ratings. Although Random Forest mo-

dels have a high tolerance for biased datasets in comparison 
to Support Vector Machines and K-Nearest Neighbors, the 
small number of lower-rated apps may have been too small 
for adequate training. rating
 The main limiting factor of the study was data—the datas-
et we used was heavily skewed towards apps with a 4+ rating, 
making our models lean more towards predicting those apps 
than equally representing all ratings A more suitable dataset 
would, ideally, include a more balanced pool of data points, 
as well as attributes specifying any bugs, load-in times, and 
popups for a more granular look into in-app variables. Fur-
thermore, more precise data on points like installs would be 
beneficial. However, this dataset contains categories relevant 
to other studies—further analysis of the data could predict 
several variables, such as the optimal name for an app in a 
certain genre and a comparison of the size of an app and its 
install rate. Taken together, we conclude that the attributes of 
an app, mainly Price, Installs, and Genre, allow for the pre-

Figure 2: Pair plot of all attributes including respective 
correlation coefficients. Comparisons between each app attribute 
(omitting variables cleaned using one-hot encoding) shown as 
kernel density estimate plots (N=8). Individual relationships show 
weak linear correlations (which are calculated using the Pearson 
correlation coefficient) between different pairings, the magnitudes of 
which lay between ~0.02 and 0.21.

Figure 3: Random forest classification metrics. Random forest 
model’s classification metrics (precision, recall, and F1 score) for 
each rating (N=5). Precision shows how often the model correctly 
rates an app (proportion of true positives to true and false positives), 
whereas recall shows how often the model correctly identifies rating 
out of all similar ratings (proportion of true positives to true positives 
and false negatives). F1 score is a harmonic mean of these two 
metrics.

Figure 4: Random forest rating supports. Occurrences of each 
rating within the random forest’s testing data (data points=1874), 
with each rating as a different color (N=5). Supports have similar 
distributions to training data (data points=7492) as well as total app 
distribution (data points=9366).

Figure 5: Random forest classifier’s relative attribute weights. 
Relative importance of each attribute (N=7). with the categorical 
attributes Category and Content Rating omitted (attribute 
importance<0.015). The categorical attributes Category and Content 
Rating were omitted, as each category and content rating (33 and 
6, respectively) had an attribute importance < 0.015. These feature 
importances were found using Gini impurity—the more important 
an attribute, the more it would decrease the impurity, or how often 
a random data point would be incorrectly classified. They are then 
averaged and normalized, summing to 1 (or 100%), allowing for 
relativistic interpretation. 
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diction of the rating of an app. The results of this paper can 
impact the decisions of app developers looking to optimize 
and predict the rating of their app—from what attributes to 
prioritize their development, to predicting the trajectory of 
their app, our paper can provide insights into the creation of a 
popular Google Play Store app.

MATERIALS AND METHODS
Data Exploration and Cleaning
 The data set used in this paper was taken from Kaggle.
com and was scraped from the Google Play Store in 2018 and 
contains the info for 10,841 apps within 14 attributes (Table 
1) (11). After cleaning, every attribute except for Type, Genre, 
and Current Ver were used. Type, while able to be converted 
into numerical values, is less accurate than Price. Although 
Genre is more specific than Category, we felt that Category 
would be more applicable to developers, as apps compete in 
broader, app-wide categories rather than niche sub-genres. 
We also did not include Current Ver since it is determined by 
the app developer and is entirely subjective.
 We began cleaning the data by removing all apps with 
NaN ratings, as well as removing improperly formatted 
data points. For Size, 17% of all values were listed as “Var-
ies with device” —instead of removing a significant part of 
our data set, we opted to convert them to the average size 
of the other apps to prevent additional bias. For App name, 
we decided to convert it to “name length”, as wordier names 
are less catchy and harder to type into search bars, reducing 
the visibility of the app. For Category and Content Rating, we 
used one-hot encoding to convert their names to numerical 
IDs, each a 2-D integer array that prevents natural ordering 
(1, 2, 3, …) which could result in falsely perceived correla-
tions. For Last Updated, we converted the attribute to Days 
Since Final Update, with 0 equal to the latest update within 
the dataset, increasing by 1 for each day earlier. Finally, we 
converted Android Ver using a similar process to cleaning 
Size—14% of the values were listed as “Varies with device”, 
so they were converted to the median version, as Android Ver 
contains discrete values rather than Size’s continuous values. 
 
Exploratory Data Analysis
 All analyses were done in Python version 3.9.12 using the 
pandas, Matplotlib, Seaborn, and Scikit-learn packages (14-
18).
 To analyze the distribution of rating, we used the Matplotlib 
interface Pyplot to graph ratings against their occurrences in a 
bar graph (Figure 1). Then, to find the relation between ratings 
and other app attributes, we used a pairplot from the Seaborn 
library. Attributes cleaned using one-hot encoding, namely 
Category and Content Rating, were not included (Figure 2). 

Model Fitting
 After concatenating all our usable attributes, we used a 
MinMaxScalar from Scikit-learn to standardize the data into 
a range of 0 to 1. Afterward, we split the data into an 80-20 
training and testing set for our models. Because our classi-
fiers are predicting rating, we decided to fit the attribute into 5 
buckets through flooring. We chose to floor rating due to two 
reasons—firstly, app developers hoping to meet rating goals 
would benefit from a more pessimistic outlook. Secondly, we 
believe that a perfect 5 rating carries more credibility than a 
4.5 or 4.6, so we wanted to preserve that distinction.

 Before training our models, we first performed grid search-
es to find the optimal model parameters. Starting with our 
KNN model, we found the optimal amount of “k” neighbors to 
be 50. The grid search for our SVM and RF models confirmed 
their default parameters, but due to the random forest model’s 
resistance to overfitting, we set its “n_estimators” parameter 
to an arbitrarily high value of 1000. After fitting the training 
data, the models had the following accuracies: Random For-
est—0.793, Support Vector Machine—0.768, and K-Nearest 
Neighbors—0.767. Instead of pursuing an analysis of each 
model, we decided that sufficient knowledge would be gained 
from an analysis of just our highest performing model, the 
random forest classifier, as it better handles overfitting and 
biased datasets than the other two classifiers.
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