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increase, since droughts affect waterways and ports. The dry 
climate additionally leads to an increase in wildfires that can 
grow to large scales (1).
 As global temperatures continue to rise, droughts continue 
to plague the U.S., they not only become more frequent, but 
last longer (4). At the beginning of the 21st century, several 
droughts were spread throughout the U.S., but by 2012, 
the geographic areas were combined, converting it into a 
nationwide event that had not been seen in decades (5). In 
2022, 41% of the U.S. was in a drought, affecting 130 million 
people (6).
 Drought prediction is important to help communities, 
businesses, and governments to plan and prepare for dry 
conditions that can have significant impacts on agriculture, 
water resources, and the economy (7, 8). By identifying 
factors that lead to drought, prediction not only facilitates loss 
prevention, but also drought prevention: predicting droughts 
in a timely manner prevents the intensification of droughts 
too, as it allows for preventative measures to be implemented. 
This leads to decreased impacts of water shortages in 
agriculture, ecosystems, and society (9).
 While drought prediction is of utmost importance, it is an 
increasingly difficult task. Drought prediction is a complex and 
active area of scientific research, as it involves understanding 
and forecasting the complex interactions between 
atmospheric, hydrological, and land surface processes that 
influence the availability of water (10). Understanding and 
forecasting these complex interactions requires the use of 
a range of tools, data sources, and computer models. From 
monitoring these interactions, weather patterns can be 
predicted weeks to months in advance, and this information 
can be leveraged to predict drought (11).
 In this study, we hypothesized that machine learning 
models trained on historical meteorological indicators such as 
wind speed, temperature, and humidity can classify weather 
conditions into the five categories of drought severity. We 
further hypothesized that explainable machine learning 
models can provide insights into the contributing factors 
behind drought occurrence. We evaluated these hypotheses 
using a publicly available dataset collected by NASA Power 
project and the authors of U.S. Drought monitor as well as 
machine learning algorithms, including K-Nearest Neighbors 
and random forest (12-15). Results showed that statistical 
machine learning models predicted drought severity across 
the five classes with an accuracy of 56.09%. In this study, 
we relied on the fact that weather patterns or meteorological 
indicators can be predicted weeks or months in advance, and 
these values can be used in turn to predict drought conditions 
at a future time. Analyzing feature importance, we identified 
that the most impactful indicators were surface pressure, 
temperature range at two meters, and maximum temperature 
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SUMMARY
Droughts have a wide range of effects, from 
ecosystems failing and crops dying, to increased 
illness and decreased water quality. Drought prediction 
is important because it can help communities, 
businesses, and governments plan and prepare for 
these detrimental effects. This study predicts drought 
conditions by using predictable weather patterns in 
machine learning models. The model utilized factors 
such as wind speed, temperature, and humidity to 
better understand the importance of certain features in 
drought prediction. We hypothesized that explainable 
machine learning models can effectively forecast 
future drought severity. Results of experiments with 
a public domain data set showed that explainable 
statistical machine learning models predict drought 
severity with average precision and recall values of 
0.55 and 0.56, respectively. We identified a subset of 
meteorological indicators as major contributors to 
predicting the occurrence of drought. The experiments 
used K- nearest neighbors (KNN) and random forest 
algorithms to predict drought severity. The random 
forest algorithm achieved the highest accuracy at 200 
trees and 30 depth, while KNN achieved the highest 
accuracy when K was set to one. Feature importance 
analysis showed that surface pressure, temperature 
range at two meters, and maximum temperature 
at two meters were the most important features. 
In conclusion, statistical machine learning models 
provide insights into factors that impact drought and 
can enable researchers to identify steps to prevent 
natural disasters.

INTRODUCTION
 Drought is the lack of precipitation over a period of months 
causing a water shortage. The deficiency of water can 
cause ecosystems to fail, as critical functions dependent on 
precipitation are heavily impacted. Farms and ranches rely 
on precipitation for a large amount of water to grow crops, 
thus droughts lead to a decline in productivity as crops die (1). 
Regional effects can spread to entire countries. For example, 
California has experienced six droughts within the last century 
and currently is in drought (2). A majority of fruits and nuts 
that are supplied to the U.S. are grown in California, meaning 
drought in California severely affects the agricultural supply 
to the rest of the nation (3). Precipitation is also important to 
societal health, as a lack of precipitation leads to a decline 
in water amount and quality, which is associated with an 
increase in overall illness. Shipping transportation costs also 
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at two meters.

RESULTS
Prior to cleaning and balancing, we graphed the 

distribution of each categorization in the dataset (Figure 1). 
The dataset includes 18 meteorological indicators with varying 
distributions of values in each indicator (Figure 2). To further 
understand these distributions, we projected each feature 
on a two-dimensional graph to identify the commonalities 
between indicators, resulting in large overlap and supporting 
the complexity of drought prediction (Figure 3).

We ran each combination of number of trees ranging from 
10 to 300 and depth ranging from 1 to 40 through the random 
forest model (Figure 4). The highest validation accuracy from 
the validation subset of the data of 55.64% was achieved 
by the random forest model with 200 estimators/trees and 
a depth of 30 (Figure 4F). The test accuracy of this model 
was 56.09%. The highest validation accuracy achieved by 
the KNN algorithm was 52.21% for a K value of one (Figure 
5A). Therefore, the random forest algorithm performed better 
than KNN in the validation accuracy metric. We determined 
PS (surface pressure measured in kilopascal), T2M_RANGE 
(temperature range at two meters, measured in Celsius) and 
T2M_MAX (maximum temperature at two meters, measured 

in Celsius) to be the most important features in predicting 
the drought condition by the random forest algorithm. To 
determine if the difference in ranges between the various 
features lowered the initial accuracy, we normalized the 

Figure 1: Frequency of the different categories prior to dataset 
cleaning and balancing. D0 contained 532,931 samples. D1 
contained 329,007 samples. D2 contained 225,007 samples. D3 
contained 132,089 samples. D4 contained 56935 samples. The 
dataset contained 2,756,796 inputs with categories.

Figure 2: Histograms of the data distribution for each 
meteorological indicator in the dataset. Each graph has 10 bins. 
A) Precipitation of the previous day value distribution measured by 
millimeters. B) Surface pressure value distribution measured in kPa. 
C) Humidity at 2 meters value distribution measured in grams per 
kilogram. D-I) Temperature, maximum and minimum temperature, 
temperature range, dew point, and wet bulb temperature value 
distribution measured at 2 meters in Celsius. J) Earth skin temperature 
value distribution measured in Celsius. K-N) Wind speed, maximum 
and minimum wind speed, and wind speed range value distribution 
measured at 10 meters in meters per second. O-R) Wind speed, 
maximum and minimum wind speed, and wind speed range value 
distribution measured at 50 meters in meters per second.

Figure 3: Principal component analysis visualization of the data. A) Graphed on the whole balanced and cleaned dataset. B) Graphed 
on the first 1000 samples to provide transparency.
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dataset to scale all the features to the same range. Then, 
we ran KNN on the test subset of the data, and the highest 
accuracy was 50.19% for a K value of one (Figure 5B).

In machine learning and data analysis, feature importance 
refers to the relative importance of each feature (also known 
as a predictor or input variable) in explaining the target 
variable. In other words, it is a measure of how much each 
feature contributes to predicting the target. Random forest, 
which achieved the highest accuracy, calculates feature 
importance across all features in the dataset. Using this 
aspect of random forest, we determined PS, T2M_RANGE 
and T2M_MAX to be the most important features (Table 
1). To validate this conclusion, we ran a sensitivity analysis 
that resulted in different important features. The sensitivity 
analysis concluded that precipitation (PS), precipitation 
(PRECTOT), and temperature range in celsius at two meters 
(T2M_RANGE) were the most important features.

Random forest with 200 trees and depth 30 achieved the 
best validation performance. This model was used to make 
predictions on the test dataset. We obtained an accuracy 

of 56.09% on the test dataset. The confusion matrix of the 
model on the test dataset showed that the model has a 
good generalized performance meaning the model correctly 
predicted the majority of the classifications (Figure 6C). 
A confusion matrix is a powerful tool used to evaluate the 
performance of a classification model by organizing the 
number of instances in every combination of true or false 
categorizations. 

DISCUSSION
In our study, we hypothesized that drought severity can be 

effectively forecasted through the use of explainable machine 
learning models. Using various meteorological features, we 
achieved a highest validation accuracy of 55.64% by the 
random forest model while the highest validation accuracy for 
KNN was 52.21%. The test accuracy of random forest was 
56.09% and KNN resulted in 50.19%. With random forest, 
we determined the most important features to be PS, T2M_
RANGE, and T2M_MAX.

We under-sampled the dataset for the majority class in 
order to overcome the issue of label skew. This may have 
resulted in loss of information about the majority class, which 
in turn impacts the performance of the machine learning 
models. More sophisticated machine learning algorithms 
based on neural networks could potentially improve 
performance. However, we did not explore these algorithms 

Figure 4: Random forest experiments with various trees and 
depths to determine the highest accuracy. Experiments run with 
number of trees ranging from 10 to 30 and depth ranging from 1 to 
40. A) Depth 1 to 5 with accuracy under 30%. B) Depth 6 to 10 with 
accuracy under 35%. C) Depth 11 to 15 with accuracy under 45%. 
D) Depth 16 to 20 with accuracy under 50%. E) Depth 21 to 25 with 
accuracy under 52%. F) Depth 26 to 30 with the highest accuracy of 
56.64%. F-H) Depth 31 to 40 with accuracy under 53%.

Figure 5: KNN accuracy graphs. Each experiment run with K 
values 1 to 19. A) Experiment run on the cleaned and balanced 
dataset achieved the highest accuracy of 52.21%. B) Experiment 
run on a cleaned, balanced, and normalized dataset achieved the 
highest accuracy of 50.19%.

Table 1. Meteorological indicators as represented in the dataset 
and descriptions sorted according to feature importance in the 
random forest algorithm with 200 trees and 30 depth.
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as their predictions are not explainable and they did not 
easily provide any information on feature importance without 
performing additional analyses. 

In classification tasks, ordinal data can be used as the 
target variable, which is what the model is predicting. Ordinal 
data is a type of categorical data that has a meaningful order 
or ranking. For example, if the true value of drought is D0 
and the model predicts D1, it is much more acceptable than 
a prediction of D4. Enacted policies are similar to policies 
of another category, so it is acceptable to predict similar 
categories. On the other hand, opposing categories would call 
for dissimilar policies so distant predictions are not preferable 
to adjacent predictions. Given that the label categories are 
ordinal and there are five levels of drought values that the 
models are predicting, a validation accuracy of 55.64% can 
be acceptable if the mis-predictions are in the neighborhood 
of the true drought value. With this interpretation, the results 
from the machine learning algorithms showed confusion 
mostly with neighboring drought levels (Figure 6). It is 
important to note that the confusion matrix of the algorithm 
on test data had an accuracy of 56.09% and showed a similar 
trend of confusion shown by the validation data (Figure 6C), 
where the mis-predictions were in the neighborhood of the 
correct prediction.

Through random forest, we identified several important 
meteorological indicators in prediction. The most significant 
feature contributing to drought shown by random forest was 
high surface pressure. This is because high pressure in 
atmospheric circulation causes air to sink towards the ground 
and rush towards low pressure zones, causing less clouds. 
As the sinking air disperses clouds which eliminates rain, 
surface pressure is a direct contributor to droughts (16).

The next most important features were maximum 
temperature and temperature range, both measured in 

Celsius at two meters above sea level. Temperature plays an 
important role in drought prediction as higher temperatures 
lead to an increase in evapotranspiration, a combination of 
evaporation from bodies of water and the release of water 
vapor from plants (17). This causes less water to soils and 
vegetation to dry out as well as a reduction in surface water 
which furthers the severity of droughts during low-precipitation 
periods (18).

To affirm which features were most important, we ran a 
sensitivity analysis on random forest with 200 trees and 30 
depth (Figure 7). The importance of each feature differed 
when comparing both methods. This is due to the fact that 
sensitivity analysis investigates the impact of varying input 
variables on a model's predictions by removing one feature 
at a time, allowing for an understanding of the model's 
sensitivity to individual variables (19). On the other hand, 
random forest feature importance assesses the significance 
of features by measuring the reduction in model performance 
when a particular feature is altered or removed. This 
collective behavior analysis, known as "mean decrease 
impurity" or "Gini importance," provides insights into the 
relative importance of features in the random forest model. 
The results of the sensitivity analysis (Figure 7) indicated that 
precipitation does indeed have a significant influence on the 
occurrence of drought. However, it is interesting to note that 
the random forest algorithm itself did not assign a high rank 
to precipitation based on its feature importance metrics. This 
finding underscores the importance of considering multiple 
factors and adopting diverse approaches when evaluating the 
significance of predictors in complex phenomena like drought.

Additionally, the dataset does not include non-drought 
conditions, meaning we only trained the model on instances 
where there was drought. The lowest category of D0 states 
that there is minimal drought in the region, not none. This 
means that inputs of drought-free conditions will result in an 
incorrect categorization of likely D0. This limits the inputs 
to regions where drought is present and drought-free areas 

Figure 6. Confusion matrices for each algorithm and random 
forest on test data. A) Random forest with 200 trees and 30 depth 
run on validation data. Predicted labels match true labels for majority 
of instances. Most correctly predicted category was D4 with 9,214 
instances. B) KNN with K=1 run on validation data. Predicted labels 
match true labels generally. D4 was the most correctly predicted 
category with 8,580 instances. C) Random forest with 200 trees 
and 30 depth run on test data. Predicted and true labels match for 
majority of instances. Category with most correct predictions was D4 
with 9,274 instances.

Figure 7. Feature importance according to sensitivity analysis. 
Run by removing one feature at a time and measuring the decrease 
in accuracy. PS was the most important feature and affected 
predictions by an average of 1.14% while the lowest achieved 
impacted predictions by an average of 0.79%.
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will not be able to be categorized correctly. We can combat 
this by integrating non-drought conditions in future training to 
allow the model to recognize drought-free data. This would 
expand the categories available for the model and permits 
more versatile inputs in the future.

The dataset has time stamped records of meteorological 
factors, which can be used to do a time series analysis of the 
data. In the future, the time series information that is a part 
of this dataset can be utilized to build forecasting models that 
consider not just the meteorological factors at a given point 
in time, but also their variation over a period of time. Other 
explainable algorithms such as Support Vector Machine or 
Naive Bayes can be tested with the dataset to compare their 
performance to KNN and random forest (20, 21).

In addition to the variables considered in this study, it is 
important to acknowledge that other factors, including soil 
moisture, land use, and vegetation cover, can significantly 
impact drought conditions. However, these factors were not 
incorporated into the current model. This limitation highlights 
the importance of an interdisciplinary approach to allow 
comprehensive drought prediction. By integrating knowledge 
from various fields and considering a broader range of 
factors, we can improve the accuracy and reliability of drought 
prediction models in the future.

MATERIALS AND METHODS
Dataset Description

The dataset used in this paper contains 19.3 million 
samples and 20 features and was collected by NASA Power 
project and the authors of U.S. Drought Monitor (12, 13). 
The U.S. Drought Monitor is a weekly map that shows the 
status and intensity of drought conditions across the U.S. It is 
produced by the National Drought Mitigation Center (NDMC) 
(22) at the University of Nebraska-Lincoln in partnership 
with the U.S. Department of Agriculture (USDA) (23), the 
National Oceanic and Atmospheric Administration (NOAA) 
(24), and other agencies. The Drought Monitor map is based 
on a combination of data sources, including satellite imagery, 
ground-based observations, and model outputs. It uses a 
standardized classification system to categorize drought 
conditions into five categories, D0 (abnormally dry) to  D4 
(exceptional drought) (Table 2) (25). Level D0 describes a 
region that is only abnormally dry, meaning regions in this 
category are typically going into or coming out of drought. 
Level D1 is moderate drought where there is minimal damage 
to crops and pastures, and water shortages are developing. 

This causes voluntary water-use restrictions to be requested 
of residents within the affected region. Level D2 is severe 
drought, where crop and pasture losses are likely and water 
shortages prompt restrictions to take effect. Level D3 is 
extreme drought that causes major crop and pasture losses 
which leads to widespread water shortages and/or mandatory 
restrictions. Level D4 is exceptional drought characterized by 
exceptional and widespread crop and pasture losses, as well 
as water shortages in reservoirs, streams, and wells, and 
water emergencies.

We visualized the distribution of each feature in the 
dataset to gain insights into their characteristics (Figure 2). 
Furthermore, to better understand the distribution of the five 
label classes, we applied principal component analysis (PCA) 
to project the features into a two-dimensional space (Figure 
3). The visualization obtained through PCA highlights the 
considerable overlap between different classes, indicating the 
complexity of predicting drought. This overlap underscores 
the need for a powerful machine learning algorithm to tackle 
the challenging task of drought prediction.

There are 18 meteorological indicators in the data (Table 
1). These indicators were used to predict drought severity 
by running the dataset through different algorithms. Each 
indicator is numerical and was analyzed to understand its 
range (Figure 2). Many indicators had a large range of data 
spread across the various categories, while others had a 
more confined range with high frequency.

Dataset Cleaning
Rows with missing values were removed. The raw dataset 

had a heavy skew in the label column, where label skew refers 
to the imbalance in the distribution of classes or labels in a 
dataset (Figure 1). Label skew can have a number of negative 
effects on the performance of machine learning models. For 
example, if a model is trained on a dataset with label skew, 
it may be more prone to making predictions for the dominant 
class and less accurate for the minority classes. This can 
lead to poor performance on unseen data or even bias in the 
model's predictions. To address this concern, the dataset 
was cleaned and balanced. The number of samples was set 
to 56,935 rows per drought category because this was the 
maximum number of samples we could use if we wanted the 
data to be perfectly balanced.

Algorithms
Two algorithms, K- nearest neighbors and random forest, 

were assessed for their predictive performance. 
Random forest is a powerful machine learning algorithm 

that makes predictions based on the collective vote of multiple 
decision trees. A random forest algorithm consists of many 
decision trees inside it, where the number of trees is a user 
defined hyper-parameter. By considering the prediction made 
by each decision tree, random forest can make more accurate 
predictions and handle complex patterns in data (15).

In KNN, when a prediction is made for a new data point, 
the model finds the K nearest data points in the training set 
and uses these points to make a prediction. The prediction is 
based on the majority class among the K nearest neighbors. 
KNN classifier predictions can be explained by showing the 
data points in the training set that were used to make the 
prediction. This can provide insight into how the model arrived 
at its prediction and may help to build trust in the model's 

Table 2. Drought category description and possible impacts.
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output (14).
Another way to explain the prediction made by a KNN 

classifier is to look at the distances between the new data 
point and the K nearest neighbors. For example, if the K 
nearest neighbors are all very similar to the new data point, 
then this may be a strong indication that the model's prediction 
is reliable. On the other hand, if the K nearest neighbors are 
very different from the new data point, then this may indicate 
that the model's prediction may not be as reliable.

Overall, the KNN classifier is considered to be a relatively 
simple and explainable model, as it relies on a straightforward 
distance-based approach for making predictions. However, 
it does not display feature importance and solely relies on 
the values of surrounding points, which in this case may be 
unrelated, as one point could be depicting a location across 
the country from another point.

The value of K was varied from 1 to 19 to analyze the 
impact of the hyper-parameter K on the prediction of drought. 
The K value of one achieved the highest validation accuracy. 
This model was used to predict on the test dataset, which 
resulted in an accuracy of 52.21% (Figure 5A). When the 
dataset was normalized, the highest accuracy was 50.19% 
(Figure 5B).

The hyper-parameter values of the random forest, number 
of trees/estimators, varied between 10 and 300 in increments 
ranging from 10 to 50. The maximum tree depths were varied 
between 1 and 40 (Figure 4). The model with the highest 
accuracy used 200 trees with a depth of 30 (Figure 4F). 
This model was used on the test dataset which resulted in an 
accuracy of 56.09%.

The confusion matrix obtained by the best model for 
K-nearest neighbors and random forest shows that the model 
predicts the right drought level more than 50% of times 
(Figure 6). When the random forest model is incorrect, it 
typically predicts a drought level that is one level away from 
the true drought condition (Figure 6A). A confusion matrix is 
a simple but powerful tool used to evaluate the performance 
of a classification model. It provides a clear picture of how well 
the model is able to predict different classes or categories. 
The matrix is called a "confusion" matrix because it helps us 
understand where the model might be getting confused. The 
confusion matrix is usually presented as a table with rows 
and columns. The rows represent the true or actual classes, 
while the columns represent the predicted classes made by 
the model. Each cell in the matrix represents the number 
of instances that fall into a specific combination of true and 
predicted classes.

According to the random forest model, the most important 
factor in predicting the drought condition was PS (surface 
pressure), followed by T2M_RANGE (temperature range at 
two meters measured in Celsius) and T2M_MAX (maximum 
temperature at two meters measured in Celsius) (Table 1). 
Feature importance is calculated based on how much each 
feature reduces the impurity in the splits of the trees. Impurity 
represents how well the trees split the data. The impurity of a 
node is then used to determine the best split at each node of 
the decision tree, with the goal of creating nodes that are as 
pure as possible.

Code
Code used to perform the experiments is available at: 

https://github.com/clarissecheung/JEI_Drought_Prediction 
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