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isolation from other animals and lethargy, which negatively 
impacts their quality of life without proper care (5).

With the advent of modern Internet of Things (IoT), there 
are many technologies that can be used to improve animals’ 
lives in zoos. IoT technology includes gadgets and devices 
that function through the internet, often communicating with 
one another to achieve a goal such as communication, motion 
detection, or home security. There are two main reasons why 
IoT is beneficial for zoos. First, using IoT can reduce the cost 
of zoo maintenance. Animal behavior data that is collected 
by various algorithms can be used to track abnormal animal 
behavior/movements and identify whether an animal is ill and 
allows fast meditation. Second, using IoT can enhance the 
welfare of the animals. For example, zookeepers can find the 
most active locations where animals tend to spend their time 
and reflect on the information to design an improved layout 
of the cage. A better zoo layout or design can be used to 
increase positivity in animals so that they can be more active 
(6). By changing the current design with these technologies, 
zoos may have a much better chance of keeping animals 
happier and decreasing annual spending on maintenance 
and other tasks (7).

For an animal caring IoT platform, we first developed 
a deep learning framework to detect abnormal animal 
movement and propose an appropriate animal cage layout. 
We found that the prediction of animal activities can be cast 
as a sequence generation problem. 

To address this, we will utilize duck movement data to 
train and test our model. Hence, we developed a machine 
learning-based method using a sequence model to predict the 
ordinary future movements of ducks. Since a cage is the usual 
roaming area for the animal, the future movement pattern was 
used to determine the shape and size of an ideal cage layout. 
We also used ordinary movement patterns of ducks, which is 
generated by our model for abnormal movement detection. 
Our method, SmartZoo, shows promise for benefiting animals 
that need a specific area of space for a high standard of living. 

RESULTS
We predicted animal movement by building a transformer-

based model and evaluated the effectiveness of our model 
by comparing whether the predicted movement was closer 
to ground truth movement than Gaussian random movement. 
We defined ‘animal care’ as detection of abnormal movement 
and prediction of suitable range of cage. Animal care is 
accomplished by a deep learning model that generates 
animal movement sequence. Our goal was to predict the 
movement patterns of an animal, compare these predictions 
to the recent movement of the animal to detect abnormal 
activities, and draw the expected cage range of the animal 
using our algorithm.

SmartZoo: A Deep Learning Framework for an IoT 
Platform in Animal Care

SUMMARY
Zoos offer educational and scientific advantages 
but face high maintenance costs and challenges in 
animal care due to diverse species' habits. Challenges 
include tracking animals, detecting illnesses, and 
creating suitable habitats. Despite the potential 
benefits, data-driven approaches like those in digital 
agriculture are rarely used in zoos due to cost and 
technical limitations. We developed a deep learning 
framework called SmartZoo to address these issues 
and enable efficient animal monitoring, condition 
alerts, and data aggregation. Animal movement data 
was treated as a time sequence; the time sequence 
was predicted using a transformer-based model; and 
the range of the cage was predicted by plotting the 
predicted animal movement based on the generated 
time sequence. We used K-means clustering to 
evaluate whether the data generated by the SmartZoo 
model would be more different than a real dataset 
when each were compared to random data from a 
Gaussian distribution. We discovered that the data 
generated by our model is closer to real data than 
random data, and we were able to demonstrate that 
the model excels at generating data that resembles 
real-world data. In the future, we hope our framework 
may assist zoological experts in caring for animals, 
enabling them to support the important educational 
missions of zoos.

INTRODUCTION
Zoos are important for children and adults alike. Zoos 

entertain and educate the public and are also critical to 
scientific research and animal conservation. There are many 
animals that are currently in danger of extinction, such as 
the golden lion tamarins, with about 2500-3000 individuals 
left, and the Arabian oryx, with about 1000 individuals left, 
but zoos keep these animals in a safe habitat so that they 
can live peacefully, thrive, and even reproduce (1,2,3). 
Zoos also educate the public about animals, sometimes 
about species that are very rare. Zoos can provide a highly 
important infrastructure for education and conservation, as 
well as inspire people to become better conservationists and 
scientists. 

However, some animals like polar bears, cheetahs, 
and lions face challenges being kept in small and compact 
areas (4). They often do not successfully adapt to zoo-like 
environments and, as a result, suffer shorter lifespans and 
reproductive failures (4). Many animals suffer from zoochosis, 
experiencing stress and depression-like symptoms such as 
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We used the duck movement dataset from Movebanks 
since it has more timepoints than other animal datasets (8). 
The duck dataset contains the longitudinal and latitudinal 
GPS value of duck’s location, obtained with variable time 
intervals (1 to 12 hours) between datapoints. We trained our 
model using movement timeseries data to predict the next 
movement timeseries data. A section of movement timeseries 
data is defined as a sequence. The predicted sequence was 
regarded as future movement of an individual duck. We used 
mean absolute percentage error (MAPE), root mean square 
error (RMSE), and mean absolute error (MAE) to measure 
the performance of the model. MAPE was used for its ease 
of interpretation and straightforward comparison between 
different models or datasets. RMSE was used for its ability 
to weigh larger errors more heavily, providing a conservative 
assessment of model performance. The strength of MAE is 
its simplicity in interpretation. The closer all three metrics 
were to 0, the better the performance of the model.

We generated predicted longitudinal and latitudinal 
sequences with our model SmartZoo, a transformer-based 
model (Figure 1-2). The ratio of training data to test data 
was 4:1. But, since there were many outliers whose z-score 
beyond the threshold (±3) near the end of training dataset, 
the model learned this pattern of outliers and the sequence 
after outlier timepoints were not properly fitted. The model 
trained with longitudinal sequences showed a 0.3325 MAPE 
score, 0.0415 RMSE score, 0.03 MAE score, and the model 
trained with latitudinal sequences showed a 0.1180 MAPE 
score, 0.0615 RMSE score, 0.0563 MAE score. Overall, 
these scores indicate that the model predicts time series 
well. The fact that MAPE scores show significant differences 
while RMSE scores are similar indicates that the longitudinal 

sequence is more susceptible to outliers. 
After using the algorithm to predict duck movement 

patterns, we wanted to test the feasibility of using the algorithm 
for cage prediction. We plotted the generated latitudinal and 
longitudinal sequence and drew a range of a cage that would 
correspond with the sequences (Figure 3). The animal cage 
shape that is drawn in this image should support the ducks’ 
movements well because it is suggested by their movements 
themselves. The cage should reduce the probability of 
blocking the ducks in any way and allow the ducks to move 
freely in every direction that they were predicted to move in. 

To evaluate how well our generated sequences modeled 
normal behavior, we wanted to test whether the sequences 
generated by our normal-behavior-trained algorithm were 
more similar to normal behavior sequences or abnormal 
behavior sequences. Abnormal duck movements, arising 
from a different distribution than that of the acquired, 
normal data, should be easily distinguishable from normal 
data. In contrast, movements generated by a model trained 
on acquired, normal behavior will likely be challenging to 
differentiate from acquired, normal data. Duck movement 
data do not follow a Gaussian distribution, and Gaussian 
distributions are widely used to generate noisy data from 
natural observations. Therefore, we simulated abnormal 
movement data by extracting sequences from a Gaussian 
distribution with a mean and variance equal to that of the 
acquired, normal behavior sequences (11).

We did K-means clustering on a mixture of model-
generated sequences and ground truth sequences (from 
the acquired data of real duck movements) and on a mixture 
of model-generated sequences and Gaussian random 
sequences. We determined how well model-generated 

Figure 1: Longitudinal sequence prediction achieved by SmartZoo. The blue graph shows the empirical sequence, and the orange graph 
shows the sequence generated by the SmartZoo transformer model. The length of the empirical sequence is 1283 observed timepoints. Time 
is in units of hours, but the intervals between timepoints are irregular. The MAPE score is 0.3325; the RMSE score is 0.0415; and the MAE 
score is 0.03.

Figure 2: Latitudinal sequence prediction achieved by Smartzoo. The blue graph shows the empirical sequence, and the orange graph 
shows the sequence generated by the SmartZoo transformer model. The length of the empirical sequence is 1283. Time is in units of hours, 
but the intervals between timepoints are irregular. The MAPE score is 0.1180; the RMSE score is 0.0615; and the MAE score is 0.0563.
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sequences, ground truth, and Gaussian random data 
are distinguished by calculating the alignment of clusters 
generated through K-means clustering with the original 
classes. Distinguishing between ground truth sequences and 
model-generated sequences showed lower accuracy (0.2054) 
than distinguishing between Gaussian random sequences 
and model-generated sequences (0.4732) (Figure 4-5). 
These results indicate that the sequences generated by our 
model are more similar to the ground truth sequences than 
the Gaussian random sequences. 

DISCUSSION
SmartZoo is a modeling algorithm with the potential to 

save zookeepers’ time and effort by supporting improved 

cage design and detecting abnormal movement through a 
transformer-based movement data generation model. We 
achieved successful movement data generation, which we 
then use to produce appropriate cage shape prediction and 
abnormal movement detection. We found that our generated 
movement data was closer to real movement data than 
random movement data from a Gaussian distribution.

Improper cages can negatively impact animals (12). 
Creating a cage based on the model-generated sequences 
together with the ground truth sequences takes into 
consideration the potential future activities of the animals, thus 
fully accommodating their movements. SmartZoo-generated 
cages remove the inconvenience and time consumption that 
comes with determining the right cage size and make the 
process robust from human errors like setting the size of cage 
too small for animal whose movement range is very large.

SmartZoo is currently capable of generating realistic 
movement data, but in the future, we plan to utilize its data 
generating power for anomaly detection as well. Since 
K-means cluster of model-generated sequence is similar 
to ground truth cluster and disimlar to Gaussian random 
sequence cluster, SmartZoo has the potential to be used 
identify unusual animal behaviors, e.g. if new data point 
significantly deviates from the value predicted by SmartZoo. 
Abnormal movement detection may allow a zookeeper to 
see that the animal is not in a normal state and may need 
assistance (13). After executing K-means clustering, a centroid 
for the normal and abnormal clusters can be obtained. Then, 
these centroid locations can be used to determine camera 
placement; to capture animal movements efficiently a camera 
should be aimed at each of the centroids of the clusters.

However, since we used only one species of animal 
(ducks), it is hard to generalize our model to all species of 
animals, and our data is not sufficient to capture the whole 
movement pattern of ducks because the data only span one 
month. Also, our analysis did not account for confounding 
variables like natural habitat, diet, and seasonal behavior. Our 
approach may be somewhat simple, but we think it will serve 

Figure 3: Range of cage prediction by using SmartZoo-
generated and ground truth movement data of ducks. Real and 
computer-generated datapoints on movement of ducks are plotted 
in 2D Euclidean space. The latitudinal and longitudinal sequences 
were scaled using scikit-learn's MinMax scaler to fit between 0 
and 1, maximizing the differences between values. Then, z-scores 
were calculated for each sequence, and data points falling outside 
the commonly used outlier detection threshold of z-score 3 were 
designated as outliers. Non-outlier data points in both latitudinal and 
longitudinal sequences were designated as the cage.

Figure 4: K-means clustering (k=2) results for mixture of 
SmartZoo-generated data and ground truth duck movement 
data. We mixed ground truth data and SmartZoo-generated data 
with same ratio. Data points are clustered into two groups via 
K-means clustering (k=2). Clustering accuracy is 0.2054, which 
means it is hard to distinguish generated data and ground truth data.

Figure 5: K-means clustering (k=2) results for mixture of 
SmartZoo-generated data and Gaussian random data. We 
mixed Gaussian random data and SmartZoo-generated data with 
same ratio. Data points are clustered into two groups via K-means 
clustering (k=2). Clustering accuracy is 0.4732, which means it is 
easier to distinguish SmartZoo-generated data and Gaussian 
random data compared to same task with ground truth data (Figure 
4).
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as the basis for further research. For further research, we are 
planning to use data that cover longer timespans, to account 
for confounding variables, and to adapt our model to as many 
species as possible.

In addition to movement data, we can also use closed-
circuit television (CCTV), a form of video surveillance, to add 
video data to the movement data. Deep learning through video 
analysis, especially in the future, could potentially play a key 
role in future versions of SmartZoo. Current deep learning 
models for video can detect objects in the video, verify the 
class of the object, classify the type of video, and even do 
question-answering tasks on videos (14,15,16,17). In the case 
of SmartZoo, deep learning models for video could detect 
an animal and identify its behavior, unveiling where it usually 
does specific behaviors like drinking, eating, and sleeping. 
Finally, a deep learning model for video could help derive 
insights into where to put food supplies, enrichment, and 
structures such as ponds depending on the usual movement 
of the animals. On a broader note, SmartZoo has potential 
to help zoos decide the optimal location to place the cages 
within the zoo grounds for people to view the animals in their 
comfortable enclosures.

MATERIALS AND METHODS
Data

Data were obtained from the open source Movebanks, a 
large dataset of tracked movements of animals across the 
world (8). We chose Lake Constance duck data, which was 
collected from 18th December 2008 to 4th January 2009 in 
Lake Constance, Germany. The dataset consisted of GPS 
information of animal movements in longitude and latitude. 
Both sequences have 1283 timepoints. Each timepoint also 
contains the observation time, and the time interval between 
each observation varies within the range of 1 to 12 hours.

Programming details
We executed our experiments on Google Colab. We used 

python version 3.7, scikit-learn version 1.2.2, numpy version 
1.22.4, matplotlib version 3.7.0, and transformers version 
4.7.0. We used transformers with basic settings provided by 
Huggingface.

Transformer model
Using the transformer model (Figure 6), time series data 

were generated. The transformer model uses a self-attention 
algorithm, which connects positions within a single sequence, 
making learning dependency and fastened training possible. 
Moreover, it uses positional information of the sequence 
via positional encoding, where it encodes sequence data 
efficiently and shows powerful performance. The transformer 
model is appropriate for capturing dependence of long-
range data. Since it is not possible to describe an animal’s 
overall behavioral pattern based on its behavior in a short 
period of time, we adopted the transformer model for our 
animal movement modeling. We used only the encoder part 
of the transformer and added two linear layers for sequence 
generation. 

Model training details and metrics
The data was split into training and testing sets to avoid 

overfitting and to increase generalizability. A Transformer 
model was trained to predict the immediate subsequent 

sequence, taking 336 timepoints as input and the successive 
168 timepoints as output. To evaluate the model, the last 336 
timepoints of the training data were used, which the model 
had never seen as input, to predict the final 168 timepoints 
corresponding to the test data. The training set was former 
80% of entire dataset and test set was latter 20% of entire 
dataset. The training set was min-max scaled using the Scikit-
learn package for efficient learning. Data was fed into the 
model by a sliding window technique. Using 336 timepoints 
of input data, the output data of 168 timepoints immediately 
following the input data was predicted. 

MAPE, RMSE, and MAE were calculated to evaluate the 
output data. The equations of each metric are as follows:

The MAPE, RMSE, and MAE scores were reported at test 
set. The performance metric was computed by the MAPE, 
score on the test set. 

K-means clustering
K-means clustering, which identifies cluster of a particular 

data point, was performed to prove that the sequence created 
by our model belongs to a ground truth rather than a Gaussian 
random sequence.

Random sequence generating
The random sequence is generated by python package 

‘numpy’. We used ‘randn’ function from numpy random 
module, which returns random numbers sampled from a 

Figure 6: Transformer model architecture. The transformer 
model architecture represents a significant shift in the approach to 
sequence-to-sequence tasks in deep learning (9). Transformers 
consist of an encoder and a decoder, each made up of multiple 
layers containing self-attention and feed-forward neural networks. 
This design enables the model to handle a wide range of tasks, 
including language translation, text summarization, and even 
image recognition, with high parallelization and efficiency. We used 
only encoder part to encode time-series data and predict future 
sequences.
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standard normal distribution.
All the codes and data are available at https://github.com/

DeanJii/SmartZoo.
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