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the early 1900s. Archaeologists have unearthed about 10% 
of these sites. They have found many seals, tablets, and pots 
with writings in the Indus script.
 The Indus script bears little resemblance to any of the 
ancient Indian or Middle Eastern scripts, and researchers 
have not deciphered it yet. Several researchers have claimed 
that they have partially or fully deciphered this script, but the 
scientific community has not accepted these claims (2). The 
challenge for the decipherment is that there are no inscriptions 
comparable to the Rosetta stone with a multilingual script that 
we have found. Additionally, the lengths of the Indus texts are 
small, making decipherment efforts complex. Furthermore, 
there needs to be more consensus over what language the 
script encodes (2,3). Some have even claimed it is not a 
writing system (4). Most researchers agree, however, that the 
writing encodes a language that could be one based on a 
Proto-Dravidian, Indo-Aryan, or Proto-Munda (2,3). There is 
consensus that the script has too many signs to be alphabetic 
or pure-syllabic and is likely to be a logo-syllabic script, with 
logograms representing a concept or a word, along with 
several syllables (5).
 Some Indus artifacts have survived well, while elements 
and age have damaged many of these Indus artifacts with 
textual writings (Figure 1A). We find that the texts in some 
of the artifacts are in fragmentary condition, chipped, and 
broken (1). The Indus text corpus has several texts with no 
missing signs or some with one or more missing, unclear, 
and doubtfully restored signs (Figure 1B-C). Catalogers 
have used expert opinion to guess the missing signs (1,3). 
Making this guess is not a perfect science; therefore, they 
mark the missing or unclear signs missing or doubtfully 
restored in the corpus. Manual prediction of signs is complex, 
and researchers have felt the need for automation based 
on the statistical distribution of the text and mathematical 
models to predict these missing and unclear signs. One such 
mathematical model is the n-gram Markov chain language 
model.
 The n-gram Markov chain language model, also called 
the Markov chain model or Hidden Markov Model, in this 
research work helps understand the Indus texts better from 
a statistical basis and to use it to predict these missing signs. 
For a given sequence of text in this context, an n-gram is 
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SUMMARY
A writing system was developed between 2500 
and 1800 BCE in the Indus Valley civilization in the 
Indian subcontinent and remains undeciphered. 
Indus script texts found so far in the archeological 
digs from this civilization are limited in number and 
include a lot of damaged artifacts with missing and 
unclear signs. Identifying the missing and unclear 
signs and extending the Indus text corpus will aid 
the researchers in deciphering this script. This work 
aimed to predict the missing and unclear signs using 
n-gram Markov chain models using the Interactive 
Corpus of Indus Texts (ICIT) text corpus. First, we 
analyzed patterns and concordances of the signs, 
pairs, triplets, and other n-grams and discovered 
the positional behavior of signs in the Indus texts. 
With that understanding, we built Markov chain 
language models based on n-grams, augmented with 
sign positional probabilities. Since signs could be 
missing in any location of the texts, we devised and 
implemented effective sign fill-in algorithms on top 
of these Markov chain models. Using the language 
models and the sign fill-in algorithms, we tuned 
our models and predicted single signs that were 
deliberately removed from complete texts with about 
63% accuracy. Then we used the best model and our 
tuned parameters to predict missing and unclear 
single signs in about 100 texts. The statistical methods 
we described here improve our understanding of the 
Indus script. Filling in the missing signs makes the 
corpus more complete and helps contribute to the 
broader decipherment effort.

INTRODUCTION
 The Indus Valley civilization thrived from about 3300 BCE, 
northwest of the Indian subcontinent, and is one of the world’s 
oldest civilizations (1). The Indus Valley people developed a 
writing system between 2500 and 1800 BCE, which flourished 
during its mature period. After this period, this civilization died 
out until archeologists excavated Indus archeological sites in 
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Figure 1: Indus Texts. a) Text from Mohenjo-Daro seal M-671 with no missing signs (left), b) Text from Harappa- H-610 (middle), and c) Text 
from Lothal- L-95 (right). Texts here are Right to Left, with missing Indus signs represented by a hashed block. ICIT codes run below the text.
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a contiguous sequence of ‘n’ signs. A probabilistic statistical 
model built using n-grams that uses contiguous sequences 
of signs, their frequencies, and their position in the texts is an 
n-gram Markov language model (6). 
 The conditional probability of sign ‘A,’ given signs ‘B,’ ‘C,’ 
and ‘D’ in that order, is: 

 P(A| B C D) = P(A) P(B|C) P(C|D)       Eq. 1

The Markov model assumes that the probability of a sign 
can be derived just from the conditional probability of a few 
of the sign(s) preceding it. Applying the Markov assumption 
for an n-gram and generalizing it, we need the conditional 
probabilities of just the n sequence of signs before that.

 P(wn| w1:n-1 ~ P(wn|wn-1)          Eq. 2

wn is the nth sign. The expression w1:n-1 indicates the signs 
w1,w2,...,wn−1.
 For example, using a bigram model (n = 2, where n is the 
number of consecutive signs), and where 690, 435, 235, 240 
are signs, the conditional probability of sign 690 is : P(690| 
435 235 240) = P(690|435)
 The same for a trigram model (n = 3), the conditional 
probability of sign 690 is: P(690| 435 235 240) = P(690|435 
235)
 We can use the language models to estimate the 
conditional probability of the missing signs and to predict the 
next sign given a set of signs.
 Some interesting studies have performed statistical 
analysis of the Indus text and built n-gram Markov models of 
the Indus texts that have contributed to a greater understanding 
of the texts’ linguistic nature (7–11). Some researchers have 
explored optical character recognition and visual recognition 
algorithms for identifying and understanding the script, which 
they could use to predict the missing Indus texts (12), as 
performed for ancient Greek (13). Some researchers have 
done excellent work in identifying missing and unclear text 
using the M77 Indus Corpus (11). Some of these studies were 
done using Markov chain models and have aided researchers 

in predicting some missing signs (14). 
 We hypothesized that we could identify missing and 
unclear signs in the Indus corpus using a more recent and 
complete ICIT corpus and advanced Markov chain n-gram 
models, with a newly developed positional probability model 
and sign-filling algorithms (15). Since the problem with 
multiple missing signs in a text is much more complex, we 
focused on restoring single missing signs in the Indus texts. 
We did statistical analyses of the Indus texts focused on text 
length, sign clusters, and sign positional distribution and 
built a positional probability model. We then built various 
Markov chain language models with different smoothing and 
interpolation techniques for various n-grams (6). We built the 
Sign Fill-In Start and the Sign-Fill Full algorithms on top of the 
various language models. We then passed the training and 
test datasets through the algorithms and calculated extrinsic 
model performance using Hit@N, which is the % accuracy 
of predicting the correct sign among N predicted signs.  We 
used Hit@1, Hit@5, and Hit@10 measures. Others have used 
similar measures to evaluate extrinsic model performance 
for missing Babylonian texts to fill in missing signs (16). The 
Lidstone model with  Sign Fill-In Start and n-gram order 4 
gave the best results among the various models we tried. 
We could predict a missing sign at about a 63% rate among 
the ten predicted signs. We then used that to predict the 
signs for about 100 texts where single signs were missing 
and published the predicted signs. Filling these missing and 
unclear signs makes the Indus text corpus more complete 
and will help in future decipherment efforts.

RESULTS
 The ICIT text corpus has about 4500+ texts, and after 
data-cleaning to remove unwanted texts, we ended with 2223 
unique texts to build our model. We computed the average 
length of our cleaned-up ICIT corpus and determined it to be 
between four and five signs. We rarely found the contiguous 
text of more than ten signs (Figure 2A). 

Sign Frequencies
 Understanding how signs behave in the texts is essential 

Figure 2: Statistical Analysis of Indus Texts. a) Text Length Distribution of the Indus texts. The length of individual Indus texts (number of 
signs) in the x-axis is plotted against the count of the number of texts of that length found in the cleaned up ICIT corpus b) Zipf-Mandelbrot Plot 
for Indus signs (individual characters). log10 of frequency ranks of each sign in the x-axis is plotted against the log10 of absolute frequencies in 
the y-axis in the cleaned-up ICIT Indus corpus. The straight line (red) indicates ideal Zipf-Madelbrot behavior. 
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for statistical analysis. So, In the cleaned-up corpus, we 
calculated the sign frequencies for each sign across the 
corpus. As expected for a typical language script, we found 
that a few signs appeared with high frequencies, and there 
was a long tail of signs with lesser frequencies in the corpus 
(Figure 2B). When plotted in a log-log scale, the frequency 
ranks of each sign and the absolute frequencies in the 
cleaned-up ICIT corpus closely resembled the plot for the 
Zipf-Mandelbrot law. Almost all natural languages follow this 
law, and the Indus texts following it indicate that the texts 
represent a language. The curve nearly fits the formula: 

 log(f)r = a- b* log(r+c)        Eq. 3

where fr is the frequency of sign with rank r when ranked by 
frequency and a, b, c are constants.

 This analysis concluded that following the Zipf-Mandelbrot 
law, the Indus script closely exhibits a language-like behavior. 
Thus, a language model would be apt to build using the ICIT 
text corpus.

The N-gram Analysis
 Identifying frequencies of sign clusters reveal sign 
patterns that could be significant. To identify such patterns, 
we constructed a list of n-grams from the text by finding pairs 
and triplets of signs that occur next to each other (Figure 
3). The analysis indicated a high frequency of some signs 
clustering with each other, and such patterns may show that 
this was not accidental and that these high-frequency sign 
clusters likely were used to convey a name, thing, idea, or a 
concept.

Sign Positional Analysis
 We did a positional analysis of several high-frequency 
signs to get a good idea of whether some signs appeared in 
some positions of the texts more frequently or not. We found 
positional patterns for some of the signs but only for some. 
For example, Sign 740, the Jar sign, the most frequent sign 
in the corpus, tends to occur more at the end of texts and 
seldom at the beginning (Figure 4A). Sign 861, the house/
courtyard sign, tends to occur more at the beginning and 
rarely at the end of the texts (Figure 4B). We analyzed high-
frequency signs and found that while there were patterns for 
some signs, many tended to occur all over the texts. When we 
analyzed signs by each position, we found that signs 820, 861, 
817, and 920 dominated the beginning of the texts (position 1). 
Signs 032 and 140 are often in the middle (Figure 5).

Language Models
 With a better understanding that Indus scripts follow 
patterns and represent a language, we cleaned up and 
split the Indus texts into training and test sets.  We used 
MLE (Maximum Likelihood Expectation-based language 
model), KneserNey Interpolated, Lidstone, Stupid Back-off, 
and Witten Bell Interpolated language models. We used the 
training set data to build n-gram sign tokens with n = 2 to 
7 and train these models to identify the missing signs using 
the models (17). This was  A simple replacement method 
of replacing the missing signs with every possible sign and 
selecting the resulting texts with the best model score yielded 
poor results. It was likely because the overall text model score 
did not reflect the model score of n-gram snippets formed by 
the missing text well. Therefore, we devised two algorithms 

Figure 3: Top 10 unigrams, bigrams, and trigrams with high 
frequencies in the cleaned-up ICIT. Indus corpus (Right to Left 
n-gram). Sign/Signs represents the ICIT code(s) of the sign(s), Freq. 
is the frequency of the sign(s) in the ICIT corpus. Image is the visual 
representation of the sign(s).

Figure 4: Positional Analysis of some signs. a) Positional Analysis of a sample, sign 740. Normalized position of a sign in text plotted 
against probability of finding the sign in that position in the corpus - sign 740 b)  Positional Analysis of sign 861. Normalized position of a sign 
plotted against probability of finding that sign in that position in the corpus - sign 861 (Right to Left text).
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to fill in the signs. The ‘Sign Fill-in Start’ algorithm finds signs 
that make the longest n-grams possible using conditional 
probabilities of signs before it. The ‘Sign Fill-in Full’ algorithm 
finds signs that make the longest n-grams possible with high 
conditional probability for that n-gram order from the list of 
n-grams in the corpus.

Missing signs n the ‘Training dataset’ and predictions
 We used the training dataset and removed a sign from 
each Indus text to check our algorithms and language models’ 
effectiveness. We ran this through all language models and 
compared the predicted sign with what we removed. We ran it 
100 times with signs replaced at random locations each time 
and averaged the results. All the models did well, as we had 
trained the models using the data in the training sets. We got 
excellent hit rates, and the Sign Fill-in Full algorithm did better 
than the Sign Fill-in Start algorithm (Table 1). Increasing the 
number of texts kept the results the same.

Missing signs in the ‘Test dataset’ and predictions
 We then took the texts from the test dataset, randomly 

converted a sign to an unclear sign (‘000’) in each text, and 
let the models predict the unclear sign. We repeated this 100 
times with signs replaced randomly, and the results averaged. 
Overall, the Sign Fill-in Full algorithm did worse than Sign Fill-
in Start for Hit@1 rate but very well at Hit@5 and Hit@10 
(Table 2). Both these algorithms performed poorly for missing 
leftmost signs for Right to Left texts (R to L). Sign Fill-in Full 
using Lidstone language did the best and topped the Hit@5 
and Hit@10 rates among all models. The Lidstone model has 
good smoothing to overcome the sparsity problem of training 
data by adding or adjusting the probability mass distribution of 
signs built into it, to account for probabilities of unknown signs 
and sign clusters (Table 2). For the test dataset to predict 
the missing medial signs, we picked Sign Fill-in Full with 
an n-gram order of 3 after trying various n values. It did the 
best with the Lidstone language model. Using the Lidstone 
language model, the Sign Fill-in Full with an n-gram order of 
4 did the best for the rightmost missing signs. The Sign Fill-
in Full did the best with the Lidstone language model for the 
leftmost missing signs, although hit rates were not very high 
for any n-gram order. Overall, we could predict signs at about 

Figure 5: Positional probabilities by position. a) Top 10 ICIT signs with the highest probabilities of being found in normalized position 
1. Their probabilities are in the y-axis b)  Top 10 ICIT signs with the highest probabilities of being found in normalized position 10. Their 
probabilities are in the y-axis (Right to Left text).

Table 1: Performance of Sign Fill-in Start and Sign Fill-in algorithms on top of each model on the ‘training’ dataset to find a missing 
sign, Avg. of 100 runs with random sign replacements. MRR: Mean reciprocal rank. The higher the MRR, the better the total accuracy of 
prediction is. Total Hit@1%, Hit@5%, and Hit@10% represent the percent probability of predicting a sign correctly out of 1, 5, and 10 predicted 
signs. Total Hit Category @1% is the percent probability of correctly predicting a sign category (as categorized in ICIT). Beg Hit@1%, Med 
Hit@1%, and Ter Hit@1% represent the percent probability of predicting a sign correctly at the beginning, middle and terminal locations, 
respectively, for Left to Right texts out of one predicted sign.
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~ a 35% rate to get a perfect match of the sign. ICIT corpus 
also groups signs into categories on how similar they are. We 
could predict the missing sign category at about ~49%.  When 
we predicted a sign amongst five signs, we could predict at 
~57% and amongst ten signs at ~63% accuracy rate.

Real missing signs and predictions
 Since the actual missing and unclear texts were similar 
to the test dataset texts, we then applied the above to the 
actual missing and unclear texts. We used actual missing and 
unclear texts with one missing sign separated in the corpus 
before we built the trained models. There are about 290 texts 
with multiple missing texts and ~100 with one missing sign. 
We ran this through the algorithms and the language models 
and documented the signs the model predicted (Figure 6).
 Using the best model and Sign Fill-in Full algorithm, we 
could predict the signs for about 100 texts where single signs 
were missing and publish the predicted signs. If we did this by 
random guess, it would only match among ten predicted signs 
at ~1.4%, and with just positional probabilities, it would match 
among ten predicted signs at ~7%. 

Other Models and Observations
 We built a positional probability model with a 7% prediction 
rate using each sign’s positional frequency. We used unigram 
(n=1) positional probability in a separate trial to predict an 
unclear sign. While it did much better than a random guess 
(1.4%), it did poorly overall. We used the positional probability 
as a fallback. We also constructed an Initial-Terminal Model 
to see any relationships between the initial and terminal signs 
(long-distance syntax). For this, we constructed bigrams out 
of initial and terminal signs. The results for predicting terminal 
signs using this model were not good, indicating that the 
relationship between initial and terminal symbols is weak. 

DISCUSSION
 We performed statistical analysis of the Indus texts 
using sign clusters and sign positional distribution and 
built a positional probability model. The positional analysis 

Table 2: Performance of Sign Fill-in Start and Sign Fill-in algorithms on top of each model on the ‘test’ dataset to find a missing 
sign, Avg. of 100 runs with random sign replacements. MRR: Mean reciprocal rank. The higher the MRR, the better the total accuracy of 
prediction is. Total Hit@1%, Hit@5%, and Hit@10% represent the percent probability of predicting a sign correctly out of 1, 5, and 10 predicted 
signs. Total Hit Category @1% is the percent probability of correctly predicting a sign category (as categorized in ICIT). Beg Hit@1%, Med 
Hit@1%, and Ter Hit@1% represent the percent probability of predicting a sign correctly at the beginning, middle and terminal locations, 
respectively, for Left to Right texts out of one predicted sign.

Figure 6: Unclear text with a predicted most probable sign and 
other probable signs. Up to 5 predictions are shown here for ten 
texts out of ~100 unclear texts. Text is displayed from Left to Right. 
The Text with Unclear sign column provides the sign and its ICIT 
code. ‘000’ represents a missing sign and is denoted by a hashed 
block. The Most Probable sign value is the most likely predicted sign 
that fills the missing sign. Other probable signs are signs that can fill 
the missing sign in the decreasing order of probability.
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indicates that the texts follow some syntactic structure 
with text beginners, text enders, and sets of medial signs. 
n-grams exhibit various frequencies in the text, from bigrams 
to pentagrams, and as we go beyond pentagrams, that 
frequency decreases. The positional affinity of some signs 
indicates that they may be representing some syntax in the 
language.
 Based on the understanding that the Indus script behaves 
like a language script and the sign cluster behavior, we 
hypothesized that we could use Markov chain language 
models to understand the script better. For this, we built 
various Markov chain language models with various 
smoothing and interpolation techniques for various orders 
of n-grams to test all combinations. The problem of filling in 
unclear and missing signs in texts is complex as signs could 
be missing at the beginning, end of a text, or in the middle, 
making just the look-ahead that a language model provides 
by itself unsuitable. Some have used dynamic algorithms like 
the Viterbi algorithm to find the most probable state sequence 
for a given observation in a hidden Markov model (14).  We 
took a different approach to filling in the signs. We built the 
algorithms that we call Sign-Fill-In Start and Sign-Fill Full on 
top of the various language models and put our training and 
test datasets through them. We calculated extrinsic model 
performance in filling in a missing sign at various locations in 
the text. 
 For the Indus text, using the ICIT corpus, we found that 
a group of three signs in a cluster capture much information 
when the signs appear in the middle of a text. Four signs 
are significant when appearing in the rightmost position (in 
R to L text). Signs appearing in the leftmost positions (in R 
to L text) are the most difficult to predict. In many texts, the 
leftmost signs seem separate and may not be related to the 
signs before them. Many signs tend to appear in the leftmost 
position, making predicting them difficult. 
 Our state-of-the-art language models and algorithms will 
be helpful for any researcher deciphering the Indus script. 
With a ~63% rate of successfully predicting a missing sign 
among ten possible signs, this will help in making the corpus 
more complete and in the deciphering effort. We have shared 
the code used in this project with the Indus script research 
community via GitHub so that other researchers in the Indus 
script research community can expand on the ideas to 
develop other novel ways to enhance these ideas.
 The Indus text corpus is limited, and we do not have 
long texts either. The language models that use this limited 
corpus thus have limited information. We are likely trying to 
learn a language from snippets of texts, names, or measures. 
Long-distance relationships of signs, such as through medial-
terminal or initial-terminal relationships, are not considered in 
our n-gram models. 
 We can extend this research to fill in multiple missing 
signs in a single text, which is a more challenging problem 
than filling in a single missing sign. We can also use deep 
learning techniques on the Indus texts with missing texts to 
see if that improves the prediction rates as was done with 
other languages (16). Since we have already developed the 
Markov language models for the ICIT corpus, we can also use 
these models to find anomalies and outliers. For example, 
these language models can be used to identify if Indus texts 
found in West Asia fit well with the Indus texts found in the 
Indian subcontinent. 

MATERIALS AND METHODS
Data Preprocessing and Clean-up
 To start designing a statistical model of the Indus script, 
one needs the corpus of the Indus text to be as complete 
as possible and digitized. The first significant corpus 
documenting the Indus texts is M77 (1977), with ~3500 
separate lines of text. Most of the previous research works 
have used this corpus. The ICIT database is one of the 
corpora that have some 4500+ artifacts with texts. It is a 
living corpus; the corpus administrators add newly found texts 
regularly. M77 has 417 distinct signs in M77, and ICIT has 695 
distinct signs. The variations in the number of signs are due to 
differences in opinions about whether a sign is an allograph 
of a sign or a distinct sign, along with how mirror image signs 
and repeated double signs are interpreted. As the ICIT corpus 
is continuously updated, we decided to use that over M77.
 The ICIT corpus uses unique numbers for each sign. ICIT 
represents text beginning and ending with +, missing sign 
as 000, text separation with a /, and doubtfully restored text 
with [ and ]. For example, a seal from Lothal (L-95) has text 
that in ICIT code can be represented as +740-000-175-002-
880+ and read right to left. As a first step, we converted the 
ICIT text corpus data into easily workable CSV files. As with 
any statistical analysis, we need to clean the data, and we 
did that for the ICIT corpus. We considered repeated texts 
from the same dig site with the same cult/animal object as 
duplicate texts to avoid the TAB effect (11) of us re-counting 
the same tablet. We kept only one copy of such repeated 
texts. We removed texts with unclear signs and separated 
them to do further work on them. We discarded texts where 
the directionality of the text was ambiguous or unknown 
because the direction of the text is vital for this statistical 
and positional modeling. We excluded Multi-line texts, as in 
several of them directionality of the texts was ambiguous. 
We excluded Multipart texts, where texts spanned multiple 
faces of the artifacts, as there was ambiguity in the direction 
of these texts. For us to build n-gram models, working with 
Left to Right text (L to R) was easier, so we converted all text 
to L to R text. We then removed the + and -  signs to make it 
easy to process.

Sign Positional Analysis
 Since texts are of different lengths, for the positional 
analysis part, we performed normalization to make it 
convenient to compare positions. We normalized all texts 
to the standard size of 10 signs just for sign positional 
analysis purposes. The positions are from right to left, and 
we designated the rightmost position 1, similar to what 
other researchers have done (18, 19). We computed the 
frequencies for each sign for each position and plotted them 
to identify patterns. We built a positional probability matrix for 
each sign and each position from these analyses. We then 
built a positional probability model on it, which predicted the 
likely sign given a position in a text.

Language Models
 We divided the cleaned-up Indus corpus dataset into 
80% train and 20% test sets.  We padded the text with a 
text beginner ‘<s>’ and text ender ‘</s>’ as text beginning 
and ending add more information to the computed n-grams. 
We used the training dataset to build language models. We 
trained all the language models with unigram to hexagram 
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tokens. We built two algorithms, Sign Fill-in Start and Sign 
Fill-in Full, that we designed on top of the language models.

Sign Fill-in Start Algorithm
 As mentioned, this algorithm we built finds signs that make 
the longest n-grams possible using conditional probabilities 
from the language model. Here is how this algorithm work for 
missing signs in various positions in the text:

Missing Sign is in one of the Medial (any of the middle) 
Positions: 
 Let us assume an Indus text looks like this: A, B, C, D, E, 
F, with each English character representing an Indus sign. 
If sign D is missing, the text looks like A, B, C, #, E, and F, 
with # representing the missing sign. We find the highest 
conditional probability of the sign that follows the signs [A, B, 
C] using L to R language models (language models build with 
L to R texts). If we do not find a match (when the conditional 
probability is >= our minimum probability threshold), we back 
off and find the highest conditional probability of the sign that 
follows the signs - [B, C]. If we still do not find a match, then 
the highest conditional probability of the sign follows the signs 
[C]. If there is no match till the end, we use the sign predicted 
by a positional probability model as our answer. We then do 
this for the reverse of the text and find the highest conditional 
probability of the sign that follows the signs [F, E] (this is 
the reverse of the text) using the R to L language models 
(Language models built with R to L texts). If we do not find 
any probability greater than our threshold, we back off and 
find the highest conditional probability of the sign that follows 
the signs [F].  If there is no match till the end, we use the sign 
predicted by a positional probability model for that position as 
our answer. We select the sign with the highest model context 
score as our missing sign prediction.

Missing Sign is in the Rightmost Position: 
 If the missing sign is in the rightmost position, such as in 
A, B, C, D, E  #,  we get the sign predicted by the conditional 
probability greater than our threshold for [A, B, C, D, E ], [B, 
C, D, E ], [C, D, E ], [D, E ], [E ] in that order, using the L to 
R language models, stopping when we find a match. If there 
is no match till the end, we use the sign predicted by the 
positional probability model for that position as our answer.

Missing Sign is in the Leftmost Position: 
 If the sign that is missing is in the leftmost position, such 
as in # B, C, D, E, F., We get the sign predicted by conditional 
probability greater than our threshold for [F, E, D, C, B ], [E, 
D, C, B ], [D, C, B ], [C, B ], [B ], using the R to L language 
models, in that order, stopping when we find a match. If 
there is no match till the end, we use the sign predicted by a 
positional probability model for that position as our answer.

Sign Fill-in Full Algorithm
 As mentioned before, this algorithm finds signs that make 
the longest n-grams possible with high conditional probability 
for that n-gram order from the list of n-grams in the corpus 
for a language model.  Here is how this algorithm work for 
missing signs in various positions in the text:

Missing Sign is in one of the Medial Positions: 
 If the Indus text has a missing sign in the middle as in A, 

B, C, # E, F with # representing the missing sign, starting 
from the leftmost sign, get all the n-gram of various sizes that 
includes the missing sign #. Ignore any n-gram that does not 
include the #, i.e., [A, B, C  # E, F], [A, B, C, # F] [A, B, C # ]. 
Then move right one character and do the same thing [B, C,  
#, E, F], [B, C, #, F ] [B, C # ]. We do this until we start with # 
[C, #, E, F ], [C, #, E] [C, #, E] [C, #] [ #, E, F], [#, E] [# ]. These 
are input n-grams, all the possible n-grams that include the 
missing sign.
 For each of the input n-grams produced above, starting 
from the order we want to start from, i.e., ‘k,’ get all the k th 
order model n-gram from the n-gram model. For each input 
n-gram above, we do a sign-by-sign match with the model 
n-gram list for that order and find options for sign candidates 
for the missing sign that will lead to a full match. For each 
sign candidate, we get the context model score (how well the 
text snippet, aka the context, fits the overall language model). 
Once we have a full match, we do the same thing for the rest 
of the input n-grams of the same order. We select the answer 
that has the best score for the highest order. The sign used 
for the missing sign is our answer. If we do not have a match 
for k th order, back off and go down one order of input n-gram, 
do the same for k-1 th input order, and repeat the same process 
until we get a match. If we do not get a match when we reach 
[#], we use the position of the missing sign and get the sign 
that the positional probability model returns for that position. 
The Sign fill-in Full algorithm uses the n-gram language 
models to get the context model scores for the options, but it 
operates like a simple back-off algorithm.

Missing sign in Rightmost Position: 
 Let us assume that the sign is missing in the rightmost 
position, such as A, B, C, D, E,  #. The input n-grams that we 
would try to maximize the context score down the order would 
be [A, B, C, D, E  #], [B, C, D, E,  #], [C, D, E,  #], [D, E, #], [E,  
#], [#] in that order. This part of the algorithm is similar to the 
pure look ahead case of predicting the next sign given a set 
of signs from the standard n-gram models.

Missing sign in Leftmost Position: 
 Assume that the sign is missing in the leftmost position, 
such as in # B C D E F. The input n-grams that we would try 
to maximize the score would be: [#, B, C, D, E, F], [#, B, C, D, 
E  ], [#, B, C, D], [#, B, C, D], [#, B, C], [#, B], [#, B],[#] in that 
order. 
 As described, we implemented the Sign Fill-in Start and 
the Sign Fill-In Full algorithms on top of all the language 
models.
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