
7 JULY 2023 | VOL 6 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

the early 1900s. Archaeologists have unearthed about 10%
of these sites. They have found many seals, tablets, and pots
with writings in the Indus script.
 The Indus script bears little resemblance to any of the
ancient Indian or Middle Eastern scripts, and researchers
have not deciphered it yet. Several researchers have claimed
that they have partially or fully deciphered this script, but the
scientific community has not accepted these claims (2). The
challenge for the decipherment is that there are no inscriptions
comparable to the Rosetta stone with a multilingual script that
we have found. Additionally, the lengths of the Indus texts are
small, making decipherment efforts complex. Furthermore,
there needs to be more consensus over what language the
script encodes (2,3). Some have even claimed it is not a
writing system (4). Most researchers agree, however, that the
writing encodes a language that could be one based on a
Proto-Dravidian, Indo-Aryan, or Proto-Munda (2,3). There is
consensus that the script has too many signs to be alphabetic
or pure-syllabic and is likely to be a logo-syllabic script, with
logograms representing a concept or a word, along with
several syllables (5).
 Some Indus artifacts have survived well, while elements
and age have damaged many of these Indus artifacts with
textual writings (Figure 1A). We find that the texts in some
of the artifacts are in fragmentary condition, chipped, and
broken (1). The Indus text corpus has several texts with no
missing signs or some with one or more missing, unclear,
and doubtfully restored signs (Figure 1B-C). Catalogers
have used expert opinion to guess the missing signs (1,3).
Making this guess is not a perfect science; therefore, they
mark the missing or unclear signs missing or doubtfully
restored in the corpus. Manual prediction of signs is complex,
and researchers have felt the need for automation based
on the statistical distribution of the text and mathematical
models to predict these missing and unclear signs. One such
mathematical model is the n-gram Markov chain language
model.
 The n-gram Markov chain language model, also called
the Markov chain model or Hidden Markov Model, in this
research work helps understand the Indus texts better from
a statistical basis and to use it to predict these missing signs.
For a given sequence of text in this context, an n-gram is

Statistical models for identifying missing and unclear
signs of the Indus script

SUMMARY
A writing system was developed between 2500
and 1800 BCE in the Indus Valley civilization in the
Indian subcontinent and remains undeciphered.
Indus script texts found so far in the archeological
digs from this civilization are limited in number and
include a lot of damaged artifacts with missing and
unclear signs. Identifying the missing and unclear
signs and extending the Indus text corpus will aid
the researchers in deciphering this script. This work
aimed to predict the missing and unclear signs using
n-gram Markov chain models using the Interactive
Corpus of Indus Texts (ICIT) text corpus. First, we
analyzed patterns and concordances of the signs,
pairs, triplets, and other n-grams and discovered
the positional behavior of signs in the Indus texts.
With that understanding, we built Markov chain
language models based on n-grams, augmented with
sign positional probabilities. Since signs could be
missing in any location of the texts, we devised and
implemented effective sign fill-in algorithms on top
of these Markov chain models. Using the language
models and the sign fill-in algorithms, we tuned
our models and predicted single signs that were
deliberately removed from complete texts with about
63% accuracy. Then we used the best model and our
tuned parameters to predict missing and unclear
single signs in about 100 texts. The statistical methods
we described here improve our understanding of the
Indus script. Filling in the missing signs makes the
corpus more complete and helps contribute to the
broader decipherment effort.

INTRODUCTION
 The Indus Valley civilization thrived from about 3300 BCE,
northwest of the Indian subcontinent, and is one of the world’s
oldest civilizations (1). The Indus Valley people developed a
writing system between 2500 and 1800 BCE, which flourished
during its mature period. After this period, this civilization died
out until archeologists excavated Indus archeological sites in

Varun Venkatesh1, Ali Farghaly2

1 Dublin High School, Dublin, California
2 Visiting professor of NLP at the Faculty of Computers and Information at Cairo University, Egypt

Article

Figure 1: Indus Texts. a) Text from Mohenjo-Daro seal M-671 with no missing signs (left), b) Text from Harappa- H-610 (middle), and c) Text
from Lothal- L-95 (right). Texts here are Right to Left, with missing Indus signs represented by a hashed block. ICIT codes run below the text.

7 JULY 2023 | VOL 6 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

a contiguous sequence of ‘n’ signs. A probabilistic statistical
model built using n-grams that uses contiguous sequences
of signs, their frequencies, and their position in the texts is an
n-gram Markov language model (6).
 The conditional probability of sign ‘A,’ given signs ‘B,’ ‘C,’
and ‘D’ in that order, is:

 P(A| B C D) = P(A) P(B|C) P(C|D) Eq. 1

The Markov model assumes that the probability of a sign
can be derived just from the conditional probability of a few
of the sign(s) preceding it. Applying the Markov assumption
for an n-gram and generalizing it, we need the conditional
probabilities of just the n sequence of signs before that.

 P(wn| w1:n-1 ~ P(wn|wn-1) Eq. 2

wn is the nth sign. The expression w1:n-1 indicates the signs
w1,w2,...,wn−1.
 For example, using a bigram model (n = 2, where n is the
number of consecutive signs), and where 690, 435, 235, 240
are signs, the conditional probability of sign 690 is : P(690|
435 235 240) = P(690|435)
 The same for a trigram model (n = 3), the conditional
probability of sign 690 is: P(690| 435 235 240) = P(690|435
235)
 We can use the language models to estimate the
conditional probability of the missing signs and to predict the
next sign given a set of signs.
 Some interesting studies have performed statistical
analysis of the Indus text and built n-gram Markov models of
the Indus texts that have contributed to a greater understanding
of the texts’ linguistic nature (7–11). Some researchers have
explored optical character recognition and visual recognition
algorithms for identifying and understanding the script, which
they could use to predict the missing Indus texts (12), as
performed for ancient Greek (13). Some researchers have
done excellent work in identifying missing and unclear text
using the M77 Indus Corpus (11). Some of these studies were
done using Markov chain models and have aided researchers

in predicting some missing signs (14).
 We hypothesized that we could identify missing and
unclear signs in the Indus corpus using a more recent and
complete ICIT corpus and advanced Markov chain n-gram
models, with a newly developed positional probability model
and sign-filling algorithms (15). Since the problem with
multiple missing signs in a text is much more complex, we
focused on restoring single missing signs in the Indus texts.
We did statistical analyses of the Indus texts focused on text
length, sign clusters, and sign positional distribution and
built a positional probability model. We then built various
Markov chain language models with different smoothing and
interpolation techniques for various n-grams (6). We built the
Sign Fill-In Start and the Sign-Fill Full algorithms on top of the
various language models. We then passed the training and
test datasets through the algorithms and calculated extrinsic
model performance using Hit@N, which is the % accuracy
of predicting the correct sign among N predicted signs. We
used Hit@1, Hit@5, and Hit@10 measures. Others have used
similar measures to evaluate extrinsic model performance
for missing Babylonian texts to fill in missing signs (16). The
Lidstone model with Sign Fill-In Start and n-gram order 4
gave the best results among the various models we tried.
We could predict a missing sign at about a 63% rate among
the ten predicted signs. We then used that to predict the
signs for about 100 texts where single signs were missing
and published the predicted signs. Filling these missing and
unclear signs makes the Indus text corpus more complete
and will help in future decipherment efforts.

RESULTS
 The ICIT text corpus has about 4500+ texts, and after
data-cleaning to remove unwanted texts, we ended with 2223
unique texts to build our model. We computed the average
length of our cleaned-up ICIT corpus and determined it to be
between four and five signs. We rarely found the contiguous
text of more than ten signs (Figure 2A).

Sign Frequencies
 Understanding how signs behave in the texts is essential

Figure 2: Statistical Analysis of Indus Texts. a) Text Length Distribution of the Indus texts. The length of individual Indus texts (number of
signs) in the x-axis is plotted against the count of the number of texts of that length found in the cleaned up ICIT corpus b) Zipf-Mandelbrot Plot
for Indus signs (individual characters). log10 of frequency ranks of each sign in the x-axis is plotted against the log10 of absolute frequencies in
the y-axis in the cleaned-up ICIT Indus corpus. The straight line (red) indicates ideal Zipf-Madelbrot behavior.

7 JULY 2023 | VOL 6 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

for statistical analysis. So, In the cleaned-up corpus, we
calculated the sign frequencies for each sign across the
corpus. As expected for a typical language script, we found
that a few signs appeared with high frequencies, and there
was a long tail of signs with lesser frequencies in the corpus
(Figure 2B). When plotted in a log-log scale, the frequency
ranks of each sign and the absolute frequencies in the
cleaned-up ICIT corpus closely resembled the plot for the
Zipf-Mandelbrot law. Almost all natural languages follow this
law, and the Indus texts following it indicate that the texts
represent a language. The curve nearly fits the formula:

 log(f)r = a- b* log(r+c) Eq. 3

where fr is the frequency of sign with rank r when ranked by
frequency and a, b, c are constants.

 This analysis concluded that following the Zipf-Mandelbrot
law, the Indus script closely exhibits a language-like behavior.
Thus, a language model would be apt to build using the ICIT
text corpus.

The N-gram Analysis
 Identifying frequencies of sign clusters reveal sign
patterns that could be significant. To identify such patterns,
we constructed a list of n-grams from the text by finding pairs
and triplets of signs that occur next to each other (Figure
3). The analysis indicated a high frequency of some signs
clustering with each other, and such patterns may show that
this was not accidental and that these high-frequency sign
clusters likely were used to convey a name, thing, idea, or a
concept.

Sign Positional Analysis
 We did a positional analysis of several high-frequency
signs to get a good idea of whether some signs appeared in
some positions of the texts more frequently or not. We found
positional patterns for some of the signs but only for some.
For example, Sign 740, the Jar sign, the most frequent sign
in the corpus, tends to occur more at the end of texts and
seldom at the beginning (Figure 4A). Sign 861, the house/
courtyard sign, tends to occur more at the beginning and
rarely at the end of the texts (Figure 4B). We analyzed high-
frequency signs and found that while there were patterns for
some signs, many tended to occur all over the texts. When we
analyzed signs by each position, we found that signs 820, 861,
817, and 920 dominated the beginning of the texts (position 1).
Signs 032 and 140 are often in the middle (Figure 5).

Language Models
 With a better understanding that Indus scripts follow
patterns and represent a language, we cleaned up and
split the Indus texts into training and test sets. We used
MLE (Maximum Likelihood Expectation-based language
model), KneserNey Interpolated, Lidstone, Stupid Back-off,
and Witten Bell Interpolated language models. We used the
training set data to build n-gram sign tokens with n = 2 to
7 and train these models to identify the missing signs using
the models (17). This was A simple replacement method
of replacing the missing signs with every possible sign and
selecting the resulting texts with the best model score yielded
poor results. It was likely because the overall text model score
did not reflect the model score of n-gram snippets formed by
the missing text well. Therefore, we devised two algorithms

Figure 3: Top 10 unigrams, bigrams, and trigrams with high
frequencies in the cleaned-up ICIT. Indus corpus (Right to Left
n-gram). Sign/Signs represents the ICIT code(s) of the sign(s), Freq.
is the frequency of the sign(s) in the ICIT corpus. Image is the visual
representation of the sign(s).

Figure 4: Positional Analysis of some signs. a) Positional Analysis of a sample, sign 740. Normalized position of a sign in text plotted
against probability of finding the sign in that position in the corpus - sign 740 b) Positional Analysis of sign 861. Normalized position of a sign
plotted against probability of finding that sign in that position in the corpus - sign 861 (Right to Left text).

7 JULY 2023 | VOL 6 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

to fill in the signs. The ‘Sign Fill-in Start’ algorithm finds signs
that make the longest n-grams possible using conditional
probabilities of signs before it. The ‘Sign Fill-in Full’ algorithm
finds signs that make the longest n-grams possible with high
conditional probability for that n-gram order from the list of
n-grams in the corpus.

Missing signs n the ‘Training dataset’ and predictions
 We used the training dataset and removed a sign from
each Indus text to check our algorithms and language models’
effectiveness. We ran this through all language models and
compared the predicted sign with what we removed. We ran it
100 times with signs replaced at random locations each time
and averaged the results. All the models did well, as we had
trained the models using the data in the training sets. We got
excellent hit rates, and the Sign Fill-in Full algorithm did better
than the Sign Fill-in Start algorithm (Table 1). Increasing the
number of texts kept the results the same.

Missing signs in the ‘Test dataset’ and predictions
 We then took the texts from the test dataset, randomly

converted a sign to an unclear sign (‘000’) in each text, and
let the models predict the unclear sign. We repeated this 100
times with signs replaced randomly, and the results averaged.
Overall, the Sign Fill-in Full algorithm did worse than Sign Fill-
in Start for Hit@1 rate but very well at Hit@5 and Hit@10
(Table 2). Both these algorithms performed poorly for missing
leftmost signs for Right to Left texts (R to L). Sign Fill-in Full
using Lidstone language did the best and topped the Hit@5
and Hit@10 rates among all models. The Lidstone model has
good smoothing to overcome the sparsity problem of training
data by adding or adjusting the probability mass distribution of
signs built into it, to account for probabilities of unknown signs
and sign clusters (Table 2). For the test dataset to predict
the missing medial signs, we picked Sign Fill-in Full with
an n-gram order of 3 after trying various n values. It did the
best with the Lidstone language model. Using the Lidstone
language model, the Sign Fill-in Full with an n-gram order of
4 did the best for the rightmost missing signs. The Sign Fill-
in Full did the best with the Lidstone language model for the
leftmost missing signs, although hit rates were not very high
for any n-gram order. Overall, we could predict signs at about

Figure 5: Positional probabilities by position. a) Top 10 ICIT signs with the highest probabilities of being found in normalized position
1. Their probabilities are in the y-axis b) Top 10 ICIT signs with the highest probabilities of being found in normalized position 10. Their
probabilities are in the y-axis (Right to Left text).

Table 1: Performance of Sign Fill-in Start and Sign Fill-in algorithms on top of each model on the ‘training’ dataset to find a missing
sign, Avg. of 100 runs with random sign replacements. MRR: Mean reciprocal rank. The higher the MRR, the better the total accuracy of
prediction is. Total Hit@1%, Hit@5%, and Hit@10% represent the percent probability of predicting a sign correctly out of 1, 5, and 10 predicted
signs. Total Hit Category @1% is the percent probability of correctly predicting a sign category (as categorized in ICIT). Beg Hit@1%, Med
Hit@1%, and Ter Hit@1% represent the percent probability of predicting a sign correctly at the beginning, middle and terminal locations,
respectively, for Left to Right texts out of one predicted sign.

7 JULY 2023 | VOL 6 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

~ a 35% rate to get a perfect match of the sign. ICIT corpus
also groups signs into categories on how similar they are. We
could predict the missing sign category at about ~49%. When
we predicted a sign amongst five signs, we could predict at
~57% and amongst ten signs at ~63% accuracy rate.

Real missing signs and predictions
 Since the actual missing and unclear texts were similar
to the test dataset texts, we then applied the above to the
actual missing and unclear texts. We used actual missing and
unclear texts with one missing sign separated in the corpus
before we built the trained models. There are about 290 texts
with multiple missing texts and ~100 with one missing sign.
We ran this through the algorithms and the language models
and documented the signs the model predicted (Figure 6).
 Using the best model and Sign Fill-in Full algorithm, we
could predict the signs for about 100 texts where single signs
were missing and publish the predicted signs. If we did this by
random guess, it would only match among ten predicted signs
at ~1.4%, and with just positional probabilities, it would match
among ten predicted signs at ~7%.

Other Models and Observations
 We built a positional probability model with a 7% prediction
rate using each sign’s positional frequency. We used unigram
(n=1) positional probability in a separate trial to predict an
unclear sign. While it did much better than a random guess
(1.4%), it did poorly overall. We used the positional probability
as a fallback. We also constructed an Initial-Terminal Model
to see any relationships between the initial and terminal signs
(long-distance syntax). For this, we constructed bigrams out
of initial and terminal signs. The results for predicting terminal
signs using this model were not good, indicating that the
relationship between initial and terminal symbols is weak.

DISCUSSION
 We performed statistical analysis of the Indus texts
using sign clusters and sign positional distribution and
built a positional probability model. The positional analysis

Table 2: Performance of Sign Fill-in Start and Sign Fill-in algorithms on top of each model on the ‘test’ dataset to find a missing
sign, Avg. of 100 runs with random sign replacements. MRR: Mean reciprocal rank. The higher the MRR, the better the total accuracy of
prediction is. Total Hit@1%, Hit@5%, and Hit@10% represent the percent probability of predicting a sign correctly out of 1, 5, and 10 predicted
signs. Total Hit Category @1% is the percent probability of correctly predicting a sign category (as categorized in ICIT). Beg Hit@1%, Med
Hit@1%, and Ter Hit@1% represent the percent probability of predicting a sign correctly at the beginning, middle and terminal locations,
respectively, for Left to Right texts out of one predicted sign.

Figure 6: Unclear text with a predicted most probable sign and
other probable signs. Up to 5 predictions are shown here for ten
texts out of ~100 unclear texts. Text is displayed from Left to Right.
The Text with Unclear sign column provides the sign and its ICIT
code. ‘000’ represents a missing sign and is denoted by a hashed
block. The Most Probable sign value is the most likely predicted sign
that fills the missing sign. Other probable signs are signs that can fill
the missing sign in the decreasing order of probability.

7 JULY 2023 | VOL 6 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

indicates that the texts follow some syntactic structure
with text beginners, text enders, and sets of medial signs.
n-grams exhibit various frequencies in the text, from bigrams
to pentagrams, and as we go beyond pentagrams, that
frequency decreases. The positional affinity of some signs
indicates that they may be representing some syntax in the
language.
 Based on the understanding that the Indus script behaves
like a language script and the sign cluster behavior, we
hypothesized that we could use Markov chain language
models to understand the script better. For this, we built
various Markov chain language models with various
smoothing and interpolation techniques for various orders
of n-grams to test all combinations. The problem of filling in
unclear and missing signs in texts is complex as signs could
be missing at the beginning, end of a text, or in the middle,
making just the look-ahead that a language model provides
by itself unsuitable. Some have used dynamic algorithms like
the Viterbi algorithm to find the most probable state sequence
for a given observation in a hidden Markov model (14). We
took a different approach to filling in the signs. We built the
algorithms that we call Sign-Fill-In Start and Sign-Fill Full on
top of the various language models and put our training and
test datasets through them. We calculated extrinsic model
performance in filling in a missing sign at various locations in
the text.
 For the Indus text, using the ICIT corpus, we found that
a group of three signs in a cluster capture much information
when the signs appear in the middle of a text. Four signs
are significant when appearing in the rightmost position (in
R to L text). Signs appearing in the leftmost positions (in R
to L text) are the most difficult to predict. In many texts, the
leftmost signs seem separate and may not be related to the
signs before them. Many signs tend to appear in the leftmost
position, making predicting them difficult.
 Our state-of-the-art language models and algorithms will
be helpful for any researcher deciphering the Indus script.
With a ~63% rate of successfully predicting a missing sign
among ten possible signs, this will help in making the corpus
more complete and in the deciphering effort. We have shared
the code used in this project with the Indus script research
community via GitHub so that other researchers in the Indus
script research community can expand on the ideas to
develop other novel ways to enhance these ideas.
 The Indus text corpus is limited, and we do not have
long texts either. The language models that use this limited
corpus thus have limited information. We are likely trying to
learn a language from snippets of texts, names, or measures.
Long-distance relationships of signs, such as through medial-
terminal or initial-terminal relationships, are not considered in
our n-gram models.
 We can extend this research to fill in multiple missing
signs in a single text, which is a more challenging problem
than filling in a single missing sign. We can also use deep
learning techniques on the Indus texts with missing texts to
see if that improves the prediction rates as was done with
other languages (16). Since we have already developed the
Markov language models for the ICIT corpus, we can also use
these models to find anomalies and outliers. For example,
these language models can be used to identify if Indus texts
found in West Asia fit well with the Indus texts found in the
Indian subcontinent.

MATERIALS AND METHODS
Data Preprocessing and Clean-up
 To start designing a statistical model of the Indus script,
one needs the corpus of the Indus text to be as complete
as possible and digitized. The first significant corpus
documenting the Indus texts is M77 (1977), with ~3500
separate lines of text. Most of the previous research works
have used this corpus. The ICIT database is one of the
corpora that have some 4500+ artifacts with texts. It is a
living corpus; the corpus administrators add newly found texts
regularly. M77 has 417 distinct signs in M77, and ICIT has 695
distinct signs. The variations in the number of signs are due to
differences in opinions about whether a sign is an allograph
of a sign or a distinct sign, along with how mirror image signs
and repeated double signs are interpreted. As the ICIT corpus
is continuously updated, we decided to use that over M77.
 The ICIT corpus uses unique numbers for each sign. ICIT
represents text beginning and ending with +, missing sign
as 000, text separation with a /, and doubtfully restored text
with [and]. For example, a seal from Lothal (L-95) has text
that in ICIT code can be represented as +740-000-175-002-
880+ and read right to left. As a first step, we converted the
ICIT text corpus data into easily workable CSV files. As with
any statistical analysis, we need to clean the data, and we
did that for the ICIT corpus. We considered repeated texts
from the same dig site with the same cult/animal object as
duplicate texts to avoid the TAB effect (11) of us re-counting
the same tablet. We kept only one copy of such repeated
texts. We removed texts with unclear signs and separated
them to do further work on them. We discarded texts where
the directionality of the text was ambiguous or unknown
because the direction of the text is vital for this statistical
and positional modeling. We excluded Multi-line texts, as in
several of them directionality of the texts was ambiguous.
We excluded Multipart texts, where texts spanned multiple
faces of the artifacts, as there was ambiguity in the direction
of these texts. For us to build n-gram models, working with
Left to Right text (L to R) was easier, so we converted all text
to L to R text. We then removed the + and - signs to make it
easy to process.

Sign Positional Analysis
 Since texts are of different lengths, for the positional
analysis part, we performed normalization to make it
convenient to compare positions. We normalized all texts
to the standard size of 10 signs just for sign positional
analysis purposes. The positions are from right to left, and
we designated the rightmost position 1, similar to what
other researchers have done (18, 19). We computed the
frequencies for each sign for each position and plotted them
to identify patterns. We built a positional probability matrix for
each sign and each position from these analyses. We then
built a positional probability model on it, which predicted the
likely sign given a position in a text.

Language Models
 We divided the cleaned-up Indus corpus dataset into
80% train and 20% test sets. We padded the text with a
text beginner ‘<s>’ and text ender ‘</s>’ as text beginning
and ending add more information to the computed n-grams.
We used the training dataset to build language models. We
trained all the language models with unigram to hexagram

7 JULY 2023 | VOL 6 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

tokens. We built two algorithms, Sign Fill-in Start and Sign
Fill-in Full, that we designed on top of the language models.

Sign Fill-in Start Algorithm
 As mentioned, this algorithm we built finds signs that make
the longest n-grams possible using conditional probabilities
from the language model. Here is how this algorithm work for
missing signs in various positions in the text:

Missing Sign is in one of the Medial (any of the middle)
Positions:
 Let us assume an Indus text looks like this: A, B, C, D, E,
F, with each English character representing an Indus sign.
If sign D is missing, the text looks like A, B, C, #, E, and F,
with # representing the missing sign. We find the highest
conditional probability of the sign that follows the signs [A, B,
C] using L to R language models (language models build with
L to R texts). If we do not find a match (when the conditional
probability is >= our minimum probability threshold), we back
off and find the highest conditional probability of the sign that
follows the signs - [B, C]. If we still do not find a match, then
the highest conditional probability of the sign follows the signs
[C]. If there is no match till the end, we use the sign predicted
by a positional probability model as our answer. We then do
this for the reverse of the text and find the highest conditional
probability of the sign that follows the signs [F, E] (this is
the reverse of the text) using the R to L language models
(Language models built with R to L texts). If we do not find
any probability greater than our threshold, we back off and
find the highest conditional probability of the sign that follows
the signs [F]. If there is no match till the end, we use the sign
predicted by a positional probability model for that position as
our answer. We select the sign with the highest model context
score as our missing sign prediction.

Missing Sign is in the Rightmost Position:
 If the missing sign is in the rightmost position, such as in
A, B, C, D, E #, we get the sign predicted by the conditional
probability greater than our threshold for [A, B, C, D, E], [B,
C, D, E], [C, D, E], [D, E], [E] in that order, using the L to
R language models, stopping when we find a match. If there
is no match till the end, we use the sign predicted by the
positional probability model for that position as our answer.

Missing Sign is in the Leftmost Position:
 If the sign that is missing is in the leftmost position, such
as in # B, C, D, E, F., We get the sign predicted by conditional
probability greater than our threshold for [F, E, D, C, B], [E,
D, C, B], [D, C, B], [C, B], [B], using the R to L language
models, in that order, stopping when we find a match. If
there is no match till the end, we use the sign predicted by a
positional probability model for that position as our answer.

Sign Fill-in Full Algorithm
 As mentioned before, this algorithm finds signs that make
the longest n-grams possible with high conditional probability
for that n-gram order from the list of n-grams in the corpus
for a language model. Here is how this algorithm work for
missing signs in various positions in the text:

Missing Sign is in one of the Medial Positions:
 If the Indus text has a missing sign in the middle as in A,

B, C, # E, F with # representing the missing sign, starting
from the leftmost sign, get all the n-gram of various sizes that
includes the missing sign #. Ignore any n-gram that does not
include the #, i.e., [A, B, C # E, F], [A, B, C, # F] [A, B, C #].
Then move right one character and do the same thing [B, C,
#, E, F], [B, C, #, F] [B, C #]. We do this until we start with #
[C, #, E, F], [C, #, E] [C, #, E] [C, #] [#, E, F], [#, E] [#]. These
are input n-grams, all the possible n-grams that include the
missing sign.
 For each of the input n-grams produced above, starting
from the order we want to start from, i.e., ‘k,’ get all the k th
order model n-gram from the n-gram model. For each input
n-gram above, we do a sign-by-sign match with the model
n-gram list for that order and find options for sign candidates
for the missing sign that will lead to a full match. For each
sign candidate, we get the context model score (how well the
text snippet, aka the context, fits the overall language model).
Once we have a full match, we do the same thing for the rest
of the input n-grams of the same order. We select the answer
that has the best score for the highest order. The sign used
for the missing sign is our answer. If we do not have a match
for k th order, back off and go down one order of input n-gram,
do the same for k-1 th input order, and repeat the same process
until we get a match. If we do not get a match when we reach
[#], we use the position of the missing sign and get the sign
that the positional probability model returns for that position.
The Sign fill-in Full algorithm uses the n-gram language
models to get the context model scores for the options, but it
operates like a simple back-off algorithm.

Missing sign in Rightmost Position:
 Let us assume that the sign is missing in the rightmost
position, such as A, B, C, D, E, #. The input n-grams that we
would try to maximize the context score down the order would
be [A, B, C, D, E #], [B, C, D, E, #], [C, D, E, #], [D, E, #], [E,
#], [#] in that order. This part of the algorithm is similar to the
pure look ahead case of predicting the next sign given a set
of signs from the standard n-gram models.

Missing sign in Leftmost Position:
 Assume that the sign is missing in the leftmost position,
such as in # B C D E F. The input n-grams that we would try
to maximize the score would be: [#, B, C, D, E, F], [#, B, C, D,
E], [#, B, C, D], [#, B, C, D], [#, B, C], [#, B], [#, B],[#] in that
order.
 As described, we implemented the Sign Fill-in Start and
the Sign Fill-In Full algorithms on top of all the language
models.

ACKNOWLEDGEMENTS
 We thank Dr. Andreas Fuls for graciously sharing the Indus
Text corpus through the ICIT website. Sincere thanks to the
Indus research community for inspiring us to contribute to the
area of Computational Historical linguistics for deciphering
the Indus script.

Received: October 18, 2022
Accepted: January 17, 2023
Published: July 7, 2023

7 JULY 2023 | VOL 6 | 8Journal of Emerging Investigators • www.emerginginvestigators.org

REFERENCES
1. Parpola, Asko, and Jagat Pati Joshi. “Memoirs of the

Archeological Survey of India.” vol. 86, ASI, 1987.
2. Alex, Bridget. “Why We Still Can’t Read the Writing of

the Ancient Indus Civilization?” Discover Magazine.
www.discovermagazine.com/planet-earth/why-we-still-
cant-read-the-writing-of-the-ancient-indus-civilization.
Accessed Sep 2021.

3. Bonta, Steven. “The Indus Valley Script: A New
Interpretation.” Penn State University -Altoona College,
2010.

4. Farmer, Steve, et al. “The Collapse of the Indus-Script
Thesis: The Myth of a Literare Harappan Civilization.”
Electronic Journal of Vedic Studies, vol. 11, no. 2, 2004.

5. Fuls, Andreas. “Classifying Undeciphered Writing
Systems.” Journal of Historical Linguistics, vol. 128, pp.
42-58, 2015.

6. Manning, Christopher, et al. “Foundations of Statistical
Natural Language Processing.” Edited by Hinrich
Schutze, MIT Press, 1999.

7. Mahadevan, Iravatham. “The Indus script: Texts,
concordance, and tables.” Memoirs - Archaeological
Survey of India. vol. 77, Archaeological Survey of India,
1977.

8. Yadav, Nisha, et al. “A Statistical Approach For Pattern
Search In Indus Writing.” International Journal of
Dravidian Linguistics, vol. 37, pp. 39-52, 2008.

9. Rao, Rajesh P.N, et al. “Entropic evidence for linguistic
structure in the Indus script.” Science, vol. 324, no. 5931,
2009.

10. Daggumati, Shruti, and Peter Revesz. “A method of
identifying allographs in undeciphered scripts and its
application to the Indus Valley Script.” Humanities and
Social Sciences Communications volume, vol. 8, no. 50,
2021.

11. Rao, Rajesh P.N, et al. “A Markov model of the Indus
script.” PNAS, vol. 106, no. 33.

12. Palaniappan, Satish, and Ronojoy Adhikari2. “Deep
Learning the Indus Script.” ArXiv, no. Feb 2017.

13. Assael, Yannis, et al. “Restoring and attributing ancient
texts using deep neural networks.” Nature, no. 603,
2022, pp. 280–283.

14. Yadav, Nisha, et al. “Statistical Analysis of the Indus
Script Using n-Grams.” PLOS One, vol. 5(3), no. e9506,
2010.

15. Wells, Bryan, and Fuls, Andreas. “Online Indus Writing
Database.” Berlin 2010, http://www.indus.epigraphica.
de/, Accessed 30 Nov 2022.

16. Fetaya, Ethan, et al. “Restoration of fragmentary
Babylonian texts using recurrent neural networks.”
PNAS, vol. 117, no. 37, 2020.

17. Jurafsky, Dan, and James H. Martin. “Speech and
Language Processing,” 2nd Edition. Pearson Prentice
Hall, 2008.

18. Wells, Bryan K. “Epigraphic Approaches to Indus
Writing.” Oxbow Books, 2011.

19. Fuls, Andreas. “Positional Analysis of Indus Signs.”
Вопросы эпиграфики: материалы международной
конференции “Вопросы эпиграфики. Выпуск 7, часть
1, Университет Дмитрия Пожарского, 2013.

Copyright: © 2023 Venkatesh and Farghaly. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/). This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

