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in detecting candidate molecules is small, and scientists have 
looked to machine learning algorithms for better results. 
	 The	 field	 of	 deep	 generative	 chemistry	 aims	 to	 locate	
novel	 molecules	 with	 enhanced	 chemical	 properties	 for	
drug	 design,	 such	 as	 binding	 affinity,	 partition	 coefficient,	
and	 aqueous	 solubility	 (3,5,6).	 Deep	 generative	 chemistry	
involves	 using	 neural	 networks	 to	 quickly	 generate	 new	
chemical	 compounds,	 thus	 speeding	 up	 the	 slow	 process	
of	molecular	 design.	 A	 generative	model	 is	 first	 trained	 on	
a	 large	database	of	known	molecules,	allowing	 it	 to	 identify	
certain characteristics of known molecules and generate new 
ones	not	present	in	the	original	training	set.	These	generated	
molecules	 can	 then	 be	 experimentally	 tested	 to	 determine	
their	 properties	and	potential	 as	drug	 candidates.	By	using	
machine	 learning	 to	 identify	 potential	 drug	 candidates	
faster	 and	 more	 accurately	 than	 traditional	 methods,	 deep	
generative	chemistry	enables	more	efficient	drug	discovery	
and	design	(7).	
	 Machine	learning	architectures	in	generative	chemistry	fall	
into	three	major	categories:	autoencoders	(AEs),	generative	
adversarial	networks	(GANs),	and	reinforcement	learning	(RL)	
(8).	 Autoencoders	 and	 their	 variations,	 such	 as	 variational	
autoencoders	(VAEs)	and	adversarial	autoencoders	(AAEs),	
have	been	popular	for	their	ability	to	generate	novel	molecules	
(9–11).	 The	 general	 structure	 of	 a	 three-layer	 autoencoder	
includes:	encoder,	latent	space,	and	decoder.	The	input	is	a	
representation	of	a	molecule,	typically	in	the	form	of	a	SMILES	
string.	The	latent	space	encodes	the	input	into	a	condensed	
latent	vector	generally	possessing	fewer	dimensions	than	the	
input.	The	decoder	converts	 the	 latent	vector	 into	 the	 input	
format.	In	other	words,	the	goal	of	the	decoder	is	to	replicate	
the	input	based	on	its	latent	representation	(12).	Ideally,	these	
latent	vectors	should	encode	some	useful	properties	of	 the	
input	molecule.	The	generative	capability	of	an	autoencoder	
arises	 from	 traversing	 the	 latent	 space	 to	 produce	 novel	
molecules	with	 diverse	 chemical	 properties.	 Thus,	 in	 order	
for	autoencoders	to	be	effective	generative	models,	the	latent	
representation	of	molecules	must	be	carefully	optimized	(13).	
 There are several desirable characteristics of a chemical 
latent	 space.	 First	 of	 all,	 the	 latent	 space	 should	 be	 dense	
so	that	the	majority	of	latent	vectors	correspond	to	candidate	
molecules.	Another	important	characteristic	is	a	wide	diversity	
of	 generated	molecules.	 A	 common	 problem	 in	 generative	
models	 is	 overfitting,	 where	 the	 model	 can	 only	 generate	
molecules	that	are	very	similar	to	the	training	set	(14).	Diversity	
is	 important	 for	 molecular	 generation	 because	 it	 facilitates	
exploration	 of	 the	 chemical	 space	 (15).	 In	 addition,	 vectors	
close	together	should	produce	similar	molecules	and	distant	
vectors	should	produce	different	molecules.	In	particular,	the	
latent	 space	 should	 exhibit	 smooth	 variations;	 that	 is,	 the	
chemical	properties	of	a	molecule	should	change	gradually	
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SUMMARY
The vast majority of molecules with desirable drug-
like properties have not yet been discovered. With 
the advent of machine learning for de novo molecu-
lar generation, the process of designing these mol-
ecules has become increasingly efficient. However, 
to what extent are these machine learning models 
actually learning chemical properties versus mem-
orizing the syntax of a training set? In this project, 
we trained a Simplified Molecular Input Line Entry 
System (SMILES)-based generative autoencoder for 
up to 200 epochs to investigate whether the latent 
space can separate molecules based on five chemi-
cal properties (partition coefficient, molecular weight, 
topological polar surface area, number of hydrogen 
bond donors, and number of hydrogen bond accep-
tors) and how generated molecules compare to the 
training set. We hypothesized that the model would 
preferentially encode molecular weight and that gen-
erated molecules would be similar to the training set. 
Consistent with our hypothesis, the model quickly 
learned to distinguish molecules primarily by their 
molecular weight, while other properties were con-
sidered to a lesser extent. Moreover, generated mol-
ecules were very similar to the training set both in 
terms of structure and properties. These results sug-
gested that the model overfits the training set. In par-
ticular, the model best learns chemical properties that 
directly depend on atomic composition while it is dif-
ficult for the model to encode higher-level properties 
that rely on connectivity and structure. Our results 
may represent fundamental limitations of SMILES-
based generative models and could assist in devel-
opment of new research to mitigate these issues.

INTRODUCTION
	 Drug	 discovery	 is	 crucial	 for	 improving	 public	 health	
by	 providing	 new	 treatment	 options,	 preventing	 disease	
occurrence	and	addressing	unmet	medical	needs.	Drug-like	
chemical	 space	 is	 estimated	 to	 contain	 as	 many	 as	 1060	
possible	 organic	 compounds	 (1,2).	 Due	 to	 the	 resource-
intensive	 process	 of	 drug	 development,	 virtual	 screening	
techniques	have	been	developed	to	assess	chemical	space	
for	its	potential	to	contain	effective	drugs	(3).	High-throughput	
screening	 (HTS)	 is	a	 technique	 that	has	been	used	 in	both	
structure-based	 and	 ligand-based	 approaches	 to	 scan	
millions	of	pharmaceutical	compounds	for	potential	drugs	in	
a	short	period	of	time	(4).	However,	the	success	rate	of	HTS	
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as	 the	 latent	 space	 is	 traversed.	 Thus,	 the	 properties	 of	
generated	molecules	can	be	carefully	controlled	in	relation	to	
a	seed	molecule	by	varying	the	distance	between	their	latent	
vectors. 
 These desired characteristics raise the question of which, 
if	 any,	 chemical	 properties	 can	 actually	 be	 encoded	 by	 a	
SMILES-based	autoencoder.	Jin	et al. have raised concerns 
about	 the	 ability	 of	 SMILES	 strings	 to	 encode	 chemical	
properties,	given	that	similar	molecules	can	have	very	different	
SMILES	representations	(16).	However,	several	studies	have	
shown that there is indeed a correlation between certain 
chemical	 properties	 and	 SMILES-based	 latent	 vectors	 (17,	
18).	Specifically,	researchers	have	found	a	link	between	the	
Tanimoto	similarity	and	latent	vector	distances	of	molecules	
generated	 by	 SMILES-based	 architectures	 (17).	 Galushka	
and	colleagues	used	latent	vectors	generated	by	a	SMILES-
based	 VAE	 to	 predict	 chemical	 properties,	 namely	 LogD	
(lipophilicity	for	ionizable	compounds)	and	binding	affinity	and	
showed	that	the	latent	space	learns	some	but	not	all	chemical	
characteristics	from	SMILES	strings	(18).	
	 Evidently,	 SMILES-based	 autoencoders	 can	 encode	
certain	chemical	properties,	but	no	study	has	yet	compared	
whether	 some	 properties	 are	 preferentially	 encoded.	 The	
latent	space	is	constantly	changing	during	training;	therefore,	
by	 examining	 this	 latent	 space	 at	 various	 stages,	 we	 can	
determine	 the	 order	 and	 extent	 to	which	 certain	 properties	
become	encoded	in	the	latent	space.	We	trained	a	SMILES-
based generative autoencoder to investigate how the 
following	 important	 chemical	 properties	 are	 represented	 in	
the	 latent	 space	 by	 probing	 the	 density,	 smoothness,	 and	
diversity	 of	 the	 latent	 space:	 the	 partition	 coefficient	 (LP),	
average	molecular	weight	 (MW),	number	of	hydrogen	bond	

donors	 (HBD),	 number	 of	 hydrogen	bond	acceptors	 (HBA),	
and	 topological	 polar	 surface	 area	 (TPSA)	 (Figure 1).	
With	 the	 exception	 of	 TPSA,	 these	 properties	 are	 cited	 in	
Lipinski’s	Rule	of	5,	a	rule	used	for	drug	design	to	determine	
a	molecule’s	suitability	as	a	pharmaceutical	drug	(19).	TPSA	
is	also	used	to	predict	the	ability	of	a	drug	to	pass	through	the	
blood-brain	barrier	in	the	human	body	(20).	We	focus	on	the	
above	properties	due	 to	 their	 importance	 for	assessing	 the	
viability	of	drug	candidates.	
	 We	 hypothesized	 that	 the	 model	 would	 encode	 MW	
the	best	out	of	all	 tested	chemical	properties,	because	 it	 is	
least	 dependent	 on	molecular	 structure.	We	 also	 predicted	
that	 the	model	would	overfit	 the	 chemical	 properties	of	 the	
training	 set.	 The	 results	 indeed	 showed	 that	 MW	 has	 the	
strongest correlation with the location of molecules within the 
latent	space.	Furthermore,	generated	molecules	had	similar	
structural	 and	 chemical	 properties	 as	 the	molecules	 in	 the	
training	set.	We	concluded	that	SMILES-based	autoencoders	
may	 not	 be	 ideal	 for	 molecular	 generation	 due	 to	 their	
difficulty	encoding	more	complex	properties.	In	addition,	the	
generative	 capabilities	 of	 these	 models	 are	 limited	 to	 the	
properties	of	the	training	set,	even	though	such	overfitting	is	
not	obvious	during	training.	Our	study	suggests	the	need	to	
develop	alternative	architectures	for	better	results.

RESULTS
Model architecture & training
 We	used	a	basic	autoencoder	architecture	to	construct	the	
model, where both the encoder and decoder contain a gated 
recurrent	unit	(GRU)	and	the	latent	vector	is	of	size	64	(Figure 
2A).	 The	 encoder	 GRU	 performs	 a	 sequence-to-vector	
operation,	 and	 the	 decoder	GRU	 performs	 a	 sequence-to-

Figure 1: Graphical abstract of the study. We	trained	an	autoencoder	using	the	ChEMBL	dataset	to	compress	small	molecule	SMILES	
into	a	latent	vector,	and	generated	molecules	by	sampling	random	points	in	the	latent	space.	We	analyzed	the	latent	space	and	chemical	
properties	of	generated	molecules	at	different	stages	of	training.
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sequence	 operation.	 The	 encoder	 GRU	 converts	 the	 one-
hot	encoded	SMILES	sequence	to	the	latent	vector.	A	dense	
layer	reshapes	and	transforms	the	encoder	GRU	output	into	
an	intermediate	representation	referred	to	as	the	latent	vector.	
A	 second	 dense	 layer	 modifies	 the	 latent	 vector	 prior	 to	
feeding into the decoder. The decoder recreates the original 
SMILES	sequence	one	character	at	a	time	using	contextual	
information from both the latent vector and characters earlier 
in	 the	 sequence.	The	 latent	 vector	 represents	 context	 from	
the entire molecule and is used to set the initial hidden state 
of	 the	decoder	GRU.	This	hidden	state	 is	modified	by	each	
character	of	the	predicted	sequence	as	it	is	generated.	
	 For	model	 training	and	evaluation,	we	used	a	portion	of	
the	ChEMBL22	dataset	containing	500,000	unique	SMILES	
strings	with	 a	maximum	 length	of	 100	 characters	 (21).	The	
SMILES	 strings	 were	 tokenized,	 one-hot-encoded,	 and	
modified	with	start	and	end	tokens	as	described	in	a	previous	
study	 (14).	 The	 training	 process	 involved	 a	 reconstruction	
task	where	an	 input	SMILES	string	was	reconstructed	after	
being	passed	through	the	model.	
	 In	 order	 to	 investigate	 model	 characteristics	 at	 various	
stages	in	the	training	process,	we	saved	a	copy	of	the	model	
at	seven	checkpoints:	1,	5,	10,	20,	50,	100,	and	200	epochs.	
Analysis	 of	 the	 accuracy	 and	 loss	 showed	 a	 consistent	
improvement	in	model	performance	on	both	training	(94.66%)	

and	test	(94.73%)	sets	(Figure 2B).	The	accuracy	continued	
to	 increase	at	200	epochs,	suggesting	that	higher	accuracy	
may	 be	 obtained	 given	 a	 longer	 training	 time.	 To	 visualize	
how the distribution of information across latent dimensions 
changed	as	the	model	trained,	we	plotted	the	kernel	density	
of	latent	vector	values	for	1000	randomly	chosen	molecules	
from	the	training	set	at	each	checkpoint	(Figure 2C).	Values	
ranged	 from	zero	 to	one	because	of	 the	sigmoid	activation	
function	 in	 the	 latent	dense	 layer.	The	distribution	of	values	
in	 the	 latent	 dimensions	 began	 highly	 skewed	 at	 earlier	
checkpoints	 but	 transitioned	 to	 a	 more	 normal	 distribution	
at	 later	 checkpoints.	 At	 200	 epochs,	 the	 latent	 dimension	
density	plots	had	nearly	all	 relatively	normal	distributions	 in	
contrast	to	the	density	plots	at	1	epoch,	which	were	skewed.

Visualizing the latent space
 In	order	to	determine	whether	the	five	chemical	properties	
of	 interest	 (LP,	 MW,	 TPSA,	 HBD,	 HBA)	 are	 encoded	 by	
the	 latent	 vector,	 we	 visualized	 the	 latent	 space	 as	 the	
model	 was	 trained.	 For	 200	 randomly	 chosen	 molecules	
from	 the	 training	 set	 at	 each	 checkpoint,	 we	 plotted	 the	
pairwise	Euclidean	distance	between	 latent	vectors	against	
the	 difference	 in	 their	 chemical	 property	 values.	 We	 then	
calculated	 the	 Pearson’s	 correlation	 coefficient	 for	 each	
plot	 (Figure 3A).	 A	 high	 average	 correlation	 between	 the	

Figure 2: Architecture of SMILES-based GRU autoencoder, and evolution of model accuracy and latent space over epochs. A) Model 
architecture	with	layer	dimensions,	where	len	represents	the	length	of	the	padded	SMILES	sequence.	A	latent	space	with	64	dimensions	was	
empirically	chosen.	B) Training	accuracy	curve	for	the	model	over	200	epochs.	C) Kernel	density	plots	of	the	latent	space	at	the	specified	
epochs,	showing	5	randomly	chosen	latent	dimensions.	As	training	time	increases,	the	density	of	molecules	along	each	latent	dimension	
becomes	more	normally	distributed.	X	axes:	value	along	the	latent	dimension.	Y	axes:	number	of	molecules.	
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Euclidean	 distance	 and	 chemical	 property	 distance	 would	
suggest	that	the	model	had	learned	to	differentiate	molecules	
by	the	corresponding	chemical	property,	i.e.,	the	latent	space	
encoded	that	property.	Interestingly,	the	properties	displayed	
high	 correlation	 coefficients	 at	 1	 epoch	 and	 then	 sharply	
decreased before increasing again. The magnitude of these 
coefficients	 differed	 significantly	 between	 properties.	 For	
example,	MW	consistently	 exhibited	 the	 highest	 correlation	
coefficient	while	the	lowest	correlation	coefficients	belonged	
to	LP	and	HBD.	However,	no	correlations	were	negative.	
	 As	 another	 way	 to	 visualize	 the	 encoding	 of	 chemical	
properties	 throughout	 the	 latent	 space,	 we	 conducted	
principal	 component	 analysis	 (PCA).	 PCA	 plots	 provide	
a	 two-dimensional	 projection	 of	 the	 latent	 space,	 where	
molecules	closer	together	in	the	PCA	plot	tend	to	have	closer	
latent	vectors.	Chemical	property	values	were	represented	as	
different	shades	of	color	(Figure 3B).	The	presence	of	a	color	
gradient indicates that molecules in the same neighborhood of 
latent	space	have	similar	chemical	properties.	The	gradients	

were	 the	 most	 visible	 for	 the	 property	 MW,	 indicating	 that	
molecules with similar molecular weight are close together 
in	 the	 latent	 space.	 Additionally,	 consistent	 with	 earlier	
results,	 the	 decrease	 in	 explained	 variance	 for	 the	 top	 two	
principal	components	(PC1	and	PC2)	shows	that	the	variation	
in	 the	data	became	distributed	more	evenly	between	 latent	
dimensions	as	the	model	was	trained	for	longer	(Figure 3C).

Evaluating model overfitting
 Next,	 we	 looked	 at	 the	 diversity	 of	 randomly	 generated	
molecules	 from	 the	 model.	 Latent	 vectors	 were	 randomly	
defined	such	that	each	element	of	the	vector	is	between	0	and	
1.	By	converting	these	latent	vectors	to	hidden	states	assigned	
to	 the	 decoder,	 random	 SMILES	 strings	 were	 generated.	
The	 randomly	 generated	 molecular	 structures	 became	
subjectively	 more	 complex	 as	 training	 time	 increased,	 as	
shown	by	the	greater	diversity	of	substructures	(Figure 4A).	
Despite	 this,	 the	 relative	distribution	of	 rings	and	 functional	
groups	in	generated	molecules	remained	relatively	constant	
(Figure 4B-C).	In	fact,	the	relative	frequencies	of	these	rings	
and	 functional	 groups	 in	 the	generated	molecules	matched	
the relative frequencies found in the training set, suggesting 
that	the	model	had	overfitted	the	chemical	structures	of	 the	
training	set	(Figure 4B-E).	
 The model can also generate variations of a target 
molecule,	 which	 we	 refer	 to	 as	 target-guided	 generation.	
From	the	validation	set,	a	target	molecule	was	chosen	which	

Figure 3: Distribution of chemical properties across the 
latent space. A) Correlation	 coefficients	 of	 pairwise	 latent	 vector	
distances	with	property	differences	over	 training	 time.	B) Principal	
component	analysis	 showing	 the	first	 two	principal	 components	 (x	
and	y	axes,	 respectively)	 for	each	chemical	property	of	 interest	at	
each	 checkpoint.	 LP,	 partition	 coefficient;	MW,	 average	molecular	
weight;	 HBD,	 number	 of	 hydrogen	 bond	 donors;	 HBA,	 number	 of	
hydrogen	bond	acceptors;	TPSA,	topological	polar	surface	area.	C) 
Percentage	explained	variance	for	PC1	(principal	component	1)	and	
PC2	(principal	component	2)	over	training	epochs.	

Figure 4: Molecules randomly generated by model. A) Randomly	
generated	molecules	from	the	latent	space.	10	example	molecules	
are	 shown	 for	 each	 checkpoint.	 Distribution	 of	 differently	 sized	
rings	 found	 in	 randomly	 generated	 molecules	 at	 each	 checkpoint	
(B) and in the training set (D). Large	rings	indicate	rings	with	over	6	
atoms.	Distribution	of	common	functional	groups	found	in	randomly	
generated molecules (C) and training set (E).



19 JUNE 2023  |  VOL 6  |  5Journal of Emerging Investigators  •  www.emerginginvestigators.org

had	 very	 different	 properties	 from	 most	 of	 the	 training	 set	
(Figure 5A-B).	This	molecule	was	converted	to	a	latent	vector	
and	nearby	latent	vectors	were	sampled	by	adding	Gaussian	
noise	with	standard	deviation	0.01.	Thus,	molecules	similar	
to	 the	 target	 were	 generated	 (Figure 5C).	 Because	 latent	
vectors	 may	 yield	 invalid	 SMILES	 strings	 (e.g.,	 incorrect	
syntax	 or	 incompatibility	 with	 RDKit),	 the	 success	 rate	 of	

generating	molecules	is	less	than	100%.	During	both	target-
guided and random generation, the highest success rates 
were	achieved	very	early	during	training	and	then	fluctuated	
widely	(Figure 5D).	The	generated	structures	became	more	
similar to the target as training time increased, although the 
ranges	of	Tanimoto	values,	a	measure	of	chemical	similarity,	
were	fairly	large	(Figure 5E).	Additionally,	the	distribution	of	

Figure 5: Variations of a target ligand produced via guided generation. A) Target molecule for guided generation. B) Properties	of	target	
molecule	(red)	in	comparison	with	distribution	of	properties	of	train	set	(LP,	the	partition	coefficient;	MW,	molecular	weight;	HBD,	number	of	
hydrogen	bond	donors;	HBA,	number	of	hydrogen	bond	acceptors;	TPSA,	topological	polar	surface	area).	C) Variants	generated	from	the	
target	molecule.	10	example	molecules	are	shown	for	each	checkpoint,	if	available.	D) Success	rates	of	both	randomly	generated	(blue)	and	
target-guided	(orange)	molecules,	calculated	based	on	the	number	of	valid	SMILES	produced	as	a	fraction	of	the	total	number	of	attempts.	E) 
Tanimoto	coefficient,	a	measure	of	molecular	structure	similarity,	plotted	for	the	target-guided	molecules	over	training	time.
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chemical	 properties	 in	 the	 randomly	 generated	 molecules	
were	very	similar	 to	 the	properties	 found	 in	 the	 training	set	
(Figure 6).	 The	 target-guided	molecules	were	most	 similar	
to	the	target	molecule	in	terms	of	MW,	compared	with	other	
properties.	Overall,	we	showed	that	 the	autoencoder	model	
effectively	encodes	MW	in	the	latent	space	but	tends	to	overfit	
on the training data, resulting in a limited range of generated 
molecules even when guided using a target molecule.

DISCUSSION
 SMILES-based	machine	learning	models	are	a	promising	
tool	for	generating	novel	small	molecules	for	drug	discovery,	
but	 researchers	 suspect	 such	models	may	 not	 be	 properly	
grounded	 in	 chemical	 understanding.	 In	 this	 study,	 we	
analyzed	the	distribution	of	chemical	properties	in	the	latent	
space	 encoded	 by	 a	 simple	 SMILES-based	 autoencoder	
across	different	training	durations.	The	model	replicated	the	
input	SMILES	string	with	 increasing	accuracy	over	1,	5,	10,	
20,	50,	100,	and	200	epochs	of	 training	time.	As	the	model	
was	 trained	 for	 longer	 periods,	 the	 latent	 representation	 of	
the	molecule	was	more	normally	distributed	across	all	latent	
dimensions.	This	study	demonstrated	two	possible	limitations	
of	 simple	 SMILES-based	 autoencoders.	 One,	 they	 poorly	
learn	 properties	 that	 rely	 on	 factors	 beyond	 the	 atomic	
composition	of	molecules.	Two,	 the	generative	capability	of	
these	 types	of	models	may	be	 restricted	 to	 the	diversity	 of	
the	 training	 set.	 These	 results	 can	 inform	 the	 development	
of	future	molecular	generative	models	which	incorporate	true	
chemical understanding. 
	 We	 investigated	 the	 extent	 to	 which	 five	 chemical	
properties	(LP,	MW,	TPSA,	HBA,	and	HBD)	are	encoded	in	
the	latent	space.	A	property	can	be	considered	to	be	encoded	
by	the	model	if	molecules	possessing	different	values	of	that	
property	are	well-separated	 in	 the	 latent	space.	Our	 results	
demonstrate	 that	 MW	 was	 the	 only	 property	 effectively	
learned	by	the	model.	Other	properties	were	generally	poorly	
encoded	regardless	of	training	duration.	The	differential	ability	
of	 the	model	 to	 learn	various	chemical	properties	suggests	
that	there	are	fundamental	limitations	to	the	way	a	SMILES-
based	 autoencoder	 processes	 chemical	 information.	 In	

particular,	 we	 made	 a	 distinction	 between	 compositional	
properties	(which	depend	mostly	on	the	types	and	numbers	
of	 atoms	 present)	 and	 structural	 properties	 (which	 depend	
mostly	 on	 connectivity	 between	 atoms).	 Researchers	
have	 found	 that	SMILES	 strings	 are	 not	 ideal	 for	 encoding	
structural	 information	 (16,22).	 For	 example,	 because	TPSA	
is	 calculated	 additively	 using	 the	 PSA	 values	 of	 molecular	
fragments,	in	order	to	generate	TPSA-relevant	latent	features	
a	model	must	be	able	 to	encode	 the	 types	and	numbers	of	
molecular	 fragments	 (20).	Similarly,	LP	depends	heavily	on	
the	presence	of	polar	or	nonpolar	fragments,	as	lipophilicity	
is	 determined	 by	 intermolecular	 interactions	 and	 hydrogen	
bonds	(23).	However,	the	ability	to	reconstruct	SMILES	strings	
is	independent	of	the	ability	to	recognize	fragments,	because	
in	 many	 cases	 there	 is	 not	 a	 one-to-one	 correspondence	
between	the	presence	of	a	 fragment	and	the	presence	of	a	
particular	 sequence	 of	 SMILES	 characters.	 Consequently,	
ways	to	mitigate	this	limitation	have	been	proposed,	including	
the use of heteroencoders, which reconstruct canonical 
SMILES	 strings	 to	 noncanonical	 SMILES	 strings	 or	 vice	
versa	 (24,25).	Alternatively,	 the	use	of	SMILES	strings	 can	
be	 bypassed	 altogether	with	molecular	 graphs	 that	 directly	
encode	atomic	connectivity	(26).	
	 We	 also	 observed	 the	 tendency	 for	 our	 SMILES-based	
autoencoder	 to	overfit	 the	 training	 set,	 limiting	 the	diversity	
of	generated	molecules.	Several	pieces	of	evidence	indicate	
that	this	occurred.	Firstly,	the	decreasing	generative	success	
rate	 after	 five	 epochs	 of	 training	 suggests	 the	 latent	 space	
becomes	more	sparse	as	training	accuracy	increases.	In	order	
to	more	accurately	reproduce	SMILES	strings	of	the	training	
set,	 the	 model	 may	 be	 increasing	 the	 distance	 between	
their	 latent	 representations.	Secondly,	 there	 is	considerable	
overlap	between	the	distribution	of	structural	fragments	and	
chemical	properties	in	the	training	set	and	a	pool	of	randomly	
sampled	molecules	 from	 the	 latent	 space.	This	means	 that	
the	 latent	 space	 is	 biased	 toward	 the	 chemical	 properties	
and	molecular	 fragments	 found	 in	 the	 training	set,	 perhaps	
by	recreating	verbatim	segments	of	training	SMILES	strings.	
The	overfitting	phenomenon	 is	 intriguing	 in	 light	 of	 the	 fact	
that, during training, the training and validation losses do 

Figure 6: Property distribution of training set (top), randomly generated molecules (middle), and target-guided molecules (bottom). 
Red	lines	in	the	bottom	row	indicate	property	values	of	the	target	molecule	(LP,	the	partition	coefficient;	MW,	molecular	weight;	HBD,	number	
of	hydrogen	bond	donors;	HBA,	number	of	hydrogen	bond	acceptors;	TPSA,	topological	polar	surface	area).	The	MW	distribution	of	the	target-
generated	molecules	is	very	tightly	clustered	around	the	MW	of	the	target	molecule	at	200	epochs,	whereas	other	properties	are	less	similar.	
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not	diverge.	A	possible	explanation	 is	 that	 the	molecules	 in	
the	validation	set	are	very	similar	to	those	in	the	training	set.	
Thus,	 when	 the	 model	 learns	 how	 to	 reconstruct	 SMILES	
strings	from	the	training	set,	it	can	apply	this	equally	well	to	
the validation set. 
	 Several	changes	could	be	made	to	 this	model	 to	 further	
analyze	 the	 capabilities	 of	 simple	 autoencoders.	 In	 order	
to	 keep	 this	 analysis	 simple,	 we	 designed	 this	 model	 with	
a	 single	 GRU	 layer	 in	 the	 encoder	 and	 decoder.	 Multiple	
stacked	recurrent	layers	may	allow	the	model	to	learn	higher-
order	 patterns	 in	 the	SMILES	 strings	 and	 ameliorate	 some	
of	the	previously	mentioned	limitations	in	encoding	chemical	
properties.	 Moreover,	 some	 studies	 have	 found	 that	 Long	
Short-Term	 Memory	 cells	 may	 be	 better	 than	 GRUs	 at	
encoding	higher	complexity	sequences	(27).	As	a	result,	they	
may	provide	better	molecular	latent	representations	from	the	
SMILES	strings.	Newer	versions	of	autoencoders	implement	
more	complex	architectures	compared	to	the	simple	encoder-
decoder	architecture	found	in	our	model.	In	a	VAE,	the	addition	
of	a	special	 term	to	 the	 loss	 function	encourages	 the	 latent	
space	to	approximate	a	standard	normal	distribution	(28).	VAEs	
thus	ensure	 that	 the	properties	being	encoded	 in	 the	 latent	
space	are	not	 just	a	 result	of	minimizing	 the	 reconstruction	
error	between	the	input	and	the	output,	which	could	lead	to	
overfitting.	AAEs	also	use	special	loss	functions	to	regularize	
the	latent	space	(29).	This	makes	it	surprising	that	our	vanilla	
autoencoder	 model	 generates	 a	 normally	 distributed	 latent	
space,	despite	 the	 lack	of	explicit	 regularization.	Examining	
the	 cause	 of	 this	 phenomenon,	 by	 decreasing	 the	 number	
of latent dimensions or changing the activation of the latent 
layer,	 for	example,	would	be	an	 interesting	subject	of	 future	
study.	For	example,	a	Gaussian	layer	inserted	just	before	the	
decoder can add noise to the latent vector during training 
and make the decoder more robust to small deviations in 
the	 latent	 vector.	 Lastly,	 the	 training	 set	 can	 be	 expanded	
to	 reduce	 implicit	 bias.	 Although	 the	 ChEMBL	 dataset	 has	
been	 used	 as	 the	 training	 set	 in	 many	 generative	 models,	
other	 studies	 have	 used	 the	 subsets	 of	 the	 ZINC	 dataset,	
such	as	ZINC-250K,	a	dataset	containing	250,000	molecules	
(5,11,14).	 The	ChEMBL	 dataset	 is	 primarily	 generated	 from	
molecules	 used	 in	 disease	 research,	 those	with	 high	 drug-
likeness	and	 compatible	with	 the	 human	body	 (21).	On	 the	
other	hand,	the	ZINC	dataset	is	specifically	focused	on	ligand	
discovery	 for	protein	docking	and	 is	 limited	 to	commercially	
available	compounds	(30).	Combining	multiple	datasets	may	
improve	the	generative	diversity	of	the	model.	
	 As	computational	methods	become	increasingly	important	
in	 the	physical	 sciences,	we	must	understand	 their	abilities	
and	 limitations.	Our	work	demonstrates	that	SMILES-based	
autoencoders can generate novel molecules, but their 
limited	ability	to	control	the	chemical	properties	of	generated	
molecules	and	go	beyond	the	diversity	of	the	training	set	may	
restrict	 their	utility.	Researchers	should	continue	 to	develop	
and	improve	upon	these	computational	tools	in	order	to	fully	
leverage	their	potential	in	drug	discovery.

MATERIALS AND METHODS
Dataset
 The	 ChEMBL22	 dataset	 used	 in	 this	 investigation	 was	
downloaded	from	Kaggle,	a	community	data	science	platform	
(31).	500,000	SMILES	strings	were	randomly	selected,	with	
a	maximum	length	of	100	characters.	The	dataset	was	split	

into	 a	 9:1	 ratio	 and	 filtered	 for	 compatibility	with	RDKit	 (an	
open-source	 toolkit	 for	 cheminformatics),	 resulting	 in	 a	
training	 set	 containing	 449,685	molecules	 and	 a	 validation	
set	 containing	 49,951	molecules.	 Similar	 to	 the	 process	 of	
tokenizing	words	 or	 subsets	 of	 words	 in	 Natural	 Language	
Processing,	dictionaries	were	constructed	with	an	integer	key	
for	each	unique	SMILES	character	(with	start	and	end	tokens)	
in	 preparation	 for	 one-hot	 encoding.	 The	 final	 dictionary	
contained	39	unique	characters	(not	including	start	and	end	
tokens).	One-hot	encoding	 represents	categorical	data	 in	a	
way	 that	 reduces	bias	 in	 the	model	during	 training	 towards	
higher-value	 tokens,	 since	 everything	 becomes	 either	 0	 or	
1.	The	train	and	validation	sets	were	one-hot	encoded,	and	
each	SMILES	string	was	padded	with	start	and	end	tokens	to	
a	total	length	of	102	characters.

Model Details
 The	model	 consisted	 of	 encoder	 and	 decoder	 portions,	
each	 containing	 a	 GRU.	 The	 input	 was	 an	 array	 of	 one-
hot	 encoded	 SMILES	 characters	 with	 two	 dimensions:	 the	
length	of	 the	SMILES	sequence	and	 the	number	of	 unique	
characters	 in	 the	 dictionary	 (the	 length	 of	 each	 one-hot	
encoded	 character).	 A	 third	 dimension,	 the	 batch	 size	 of	
SMILES	strings	being	fed	into	the	model,	was	automatically	
prepended	by	Keras.	The	input	layer	was	fed	into	the	encoder	
GRU	one	character	at	a	 time,	over	a	number	of	 time	steps	
equal	to	the	number	of	characters	in	the	SMILES	sequence.	
At	each	time	step,	a	hidden	state	was	returned	by	the	GRU	
that	 retained	 some	 information	 from	 previous	 characters.	
Consequently,	 when	 the	 entire	 SMILES	 sequence	 was	
passed	 through	 the	 encoder	 GRU,	 the	 final	 hidden	 state	
generated	contained	vital	 information	pertinent	 to	 the	entire	
SMILES	sequence.	This	state	is	essentially	a	representation	
of	 the	 latent	vector	of	 the	SMILES	string.	The	output	shape	
of	the	encoder	GRU	has	two	dimensions:	the	batch	size	and	
the	 recurrent	 unit	 size.	 The	 recurrent	 unit	 size	 represented	
the	number	of	neurons	in	the	GRU	and	was	set	as	100	for	all	
occurrences	of	the	unit	in	the	model.	The	final	hidden	state	of	
the	encoder	GRU	was	passed	 through	another	dense	 layer	
that	had	a	dimensionality	of	64,	equal	to	the	size	of	the	latent	
vector.	The	output	of	this	dense	layer	was	the	latent	vector	of	
the	SMILES	sequence.
	 The	only	constraint	placed	on	the	latent	space	is	a	sigmoid	
activation	 function,	which	 limits	 the	values	 to	be	between	0	
and	1.	We	chose	to	use	the	sigmoid	activation	function	in	the	
latent	layer	of	the	autoencoder	because	it	limits	the	range	of	
latent	values,	discouraging	overfitting.	Empirically,	the	effect	
of	 this	constraint	 is	similar	to	the	regularization	of	 the	latent	
space	in	a	VAE.	
	 The	decoder	portion	of	the	model	was	used	to	convert	the	
modified	latent	vector	produced	by	the	encoder	model	into	an	
array	of	probabilities	that	determined	the	next	character	of	the	
SMILES	sequence.	To	convert	the	latent	vector	to	a	SMILES	
sequence,	a	second	dense	 layer	was	 required	 to	 transform	
the latent vector into the initial hidden state of the decoder 
GRU.	The	decoder	GRU	requires	a	starting	input	to	base	its	
prediction	on,	so	the	first	input	of	the	encoder	(the	start	token)	
was	 reused	 as	 the	 input	 of	 the	 decoder	GRU.	 The	 return_
sequences	parameter	of	the	decoder	GRU	was	set	as	“True”	
since	the	unit	has	to	output	a	character	in	every	timestep	up	to	
the	length	of	the	entire	SMILES	sequence.	Finally,	the	decoder	
GRU	was	passed	into	a	dense	layer	with	softmax	activation.	
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The	 final	 output	was	 the	 array	 of	 probabilities	 representing	
the	next	character	in	the	generated	SMILES	sequence.	The	
model	was	trained	for	1,	5,	10,	20,	50,	100,	and	200	epochs	
with	 the	Adam	optimizer,	 learning	 rate	of	0.001,	categorical	
cross-entropy	loss,	and	batch	size	of	256.	The	loss	function	
calculates	the	error	between	the	predicted	next	character	and	
actual	next	character,	allowing	the	model	to	learn	to	correctly	
reconstruct	the	SMILES	string.
	 In	order	 to	generate	novel	molecules,	 the	original	model	
was	split	into	two	separate	portions:	the	encoder,	which	can	
convert a target molecule to a latent vector, and the decoder, 
which	can	translate	latent	vectors	back	to	SMILES	strings.	The	
encoder	portion	was	 redefined	with	 input	and	output	 layers	
extracted	 directly	 from	 the	 original	model	 using	 the	model.
getlayer()	method	in	Keras	that	preserved	the	original	weights	
in	 these	 layers.	 The	 decoder	 was	 defined	 similarly,	 except	
that	 the	hidden	states	of	 the	decoder	GRU	were	preserved	
across	 batches	 because	 characters	 were	 inputted	 one	 at	
a	 time	 in	 independent	 batches.	 In	 contrast,	 during	 training,	
entire	 molecules	 were	 processed	 in	 a	 batch	 so	 that	 the	
states	did	not	need	to	be	preserved	from	previous	molecules.	
The	weights	of	 the	decoder	GRU	were	transferred	from	the	
trained	 model	 using	 the	 model.get_weights()	 and	 model.
set_weights()	methods.	To	generate	a	full	SMILES	string,	the	
decoder	model	was	run	in	a	loop	after	setting	the	start	token	
and	 latent	 vector.	Generated	 characters	were	 appended	 to	
the string until the model encountered an end token.
	 Two	important	characteristics	of	this	training	process	were	
teacher	forcing	and	input-output	shift.	Teacher	forcing	refers	
to	the	ground	truth	sequence	(input)	being	fed	character-wise	
into	 the	 decoder,	 so	 that	 every	 timestep	 the	 decoder	 uses	
the	ground	 truth	 rather	 than	 its	own	output	 to	generate	 the	
next	 prediction	 (32).	 Teacher	 forcing	mitigated	 the	 problem	
of	 allowing	 errors	 to	 compound	 across	 timesteps.	 Input-
output	shift	was	necessary	in	order	for	the	model	to	satisfy	a	
generative	purpose.	Specifically,	the	input	and	output	strings	
were	shifted	by	one,	so	that	the	input	lacks	the	last	end	token	
and	the	output	lacks	the	start	token.	When	the	model	is	used	
to generate novel molecules, it does so one character at a 
time, and the last generated character can be fed back into 
the	decoder	to	generate	the	next	character.	Without	shifting	
the	input	and	output	during	training,	a	valid	latent	space	may	
still	be	learned,	but	the	decoder	will	always	output	the	same	
character	as	the	input.

Python Packages
 For	this	project,	we	used	Python	3.7	and	Tensorflow	2.8.2	
running	 on	 Google	 Colaboratory	 with	 GPU	 acceleration.	
Scikit-learn	 1.0.2	 was	 used	 for	 PCA	 and	 Scipy	 1.7.3	 was	
used	 to	 compute	 the	 Pearson’s	 correlation	 coefficients.	
Plots	 were	 constructed	 in	 Python	 using	 Matplotlib	 3.2.2	
and	 Seaborn	 0.11.2.	 In	 addition	 to	 drawing	 the	 molecules,	
RDKit	2021.09.4	was	used	 to	calculate	chemical	properties	
and	identify	functional	groups	with	the	Descriptors,	Lipinski,	
and	 Fragments	 modules.	 Tanimoto	 similarity	 values	 were	
calculated	 using	 the	 AllChem	 and	 DataStructs	 modules	 of	
RDKit.
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