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in detecting candidate molecules is small, and scientists have 
looked to machine learning algorithms for better results. 
	 The field of deep generative chemistry aims to locate 
novel molecules with enhanced chemical properties for 
drug design, such as binding affinity, partition coefficient, 
and aqueous solubility (3,5,6). Deep generative chemistry 
involves using neural networks to quickly generate new 
chemical compounds, thus speeding up the slow process 
of molecular design. A generative model is first trained on 
a large database of known molecules, allowing it to identify 
certain characteristics of known molecules and generate new 
ones not present in the original training set. These generated 
molecules can then be experimentally tested to determine 
their properties and potential as drug candidates. By using 
machine learning to identify potential drug candidates 
faster and more accurately than traditional methods, deep 
generative chemistry enables more efficient drug discovery 
and design (7). 
	 Machine learning architectures in generative chemistry fall 
into three major categories: autoencoders (AEs), generative 
adversarial networks (GANs), and reinforcement learning (RL) 
(8). Autoencoders and their variations, such as variational 
autoencoders (VAEs) and adversarial autoencoders (AAEs), 
have been popular for their ability to generate novel molecules 
(9–11). The general structure of a three-layer autoencoder 
includes: encoder, latent space, and decoder. The input is a 
representation of a molecule, typically in the form of a SMILES 
string. The latent space encodes the input into a condensed 
latent vector generally possessing fewer dimensions than the 
input. The decoder converts the latent vector into the input 
format. In other words, the goal of the decoder is to replicate 
the input based on its latent representation (12). Ideally, these 
latent vectors should encode some useful properties of the 
input molecule. The generative capability of an autoencoder 
arises from traversing the latent space to produce novel 
molecules with diverse chemical properties. Thus, in order 
for autoencoders to be effective generative models, the latent 
representation of molecules must be carefully optimized (13). 
	 There are several desirable characteristics of a chemical 
latent space. First of all, the latent space should be dense 
so that the majority of latent vectors correspond to candidate 
molecules. Another important characteristic is a wide diversity 
of generated molecules. A common problem in generative 
models is overfitting, where the model can only generate 
molecules that are very similar to the training set (14). Diversity 
is important for molecular generation because it facilitates 
exploration of the chemical space (15). In addition, vectors 
close together should produce similar molecules and distant 
vectors should produce different molecules. In particular, the 
latent space should exhibit smooth variations; that is, the 
chemical properties of a molecule should change gradually 
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SUMMARY
The vast majority of molecules with desirable drug-
like properties have not yet been discovered. With 
the advent of machine learning for de novo molecu-
lar generation, the process of designing these mol-
ecules has become increasingly efficient. However, 
to what extent are these machine learning models 
actually learning chemical properties versus mem-
orizing the syntax of a training set? In this project, 
we trained a Simplified Molecular Input Line Entry 
System (SMILES)-based generative autoencoder for 
up to 200 epochs to investigate whether the latent 
space can separate molecules based on five chemi-
cal properties (partition coefficient, molecular weight, 
topological polar surface area, number of hydrogen 
bond donors, and number of hydrogen bond accep-
tors) and how generated molecules compare to the 
training set. We hypothesized that the model would 
preferentially encode molecular weight and that gen-
erated molecules would be similar to the training set. 
Consistent with our hypothesis, the model quickly 
learned to distinguish molecules primarily by their 
molecular weight, while other properties were con-
sidered to a lesser extent. Moreover, generated mol-
ecules were very similar to the training set both in 
terms of structure and properties. These results sug-
gested that the model overfits the training set. In par-
ticular, the model best learns chemical properties that 
directly depend on atomic composition while it is dif-
ficult for the model to encode higher-level properties 
that rely on connectivity and structure. Our results 
may represent fundamental limitations of SMILES-
based generative models and could assist in devel-
opment of new research to mitigate these issues.

INTRODUCTION
	 Drug discovery is crucial for improving public health 
by providing new treatment options, preventing disease 
occurrence and addressing unmet medical needs. Drug-like 
chemical space is estimated to contain as many as 1060 
possible organic compounds (1,2). Due to the resource-
intensive process of drug development, virtual screening 
techniques have been developed to assess chemical space 
for its potential to contain effective drugs (3). High-throughput 
screening (HTS) is a technique that has been used in both 
structure-based and ligand-based approaches to scan 
millions of pharmaceutical compounds for potential drugs in 
a short period of time (4). However, the success rate of HTS 
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as the latent space is traversed. Thus, the properties of 
generated molecules can be carefully controlled in relation to 
a seed molecule by varying the distance between their latent 
vectors. 
	 These desired characteristics raise the question of which, 
if any, chemical properties can actually be encoded by a 
SMILES-based autoencoder. Jin et al. have raised concerns 
about the ability of SMILES strings to encode chemical 
properties, given that similar molecules can have very different 
SMILES representations (16). However, several studies have 
shown that there is indeed a correlation between certain 
chemical properties and SMILES-based latent vectors (17, 
18). Specifically, researchers have found a link between the 
Tanimoto similarity and latent vector distances of molecules 
generated by SMILES-based architectures (17). Galushka 
and colleagues used latent vectors generated by a SMILES-
based VAE to predict chemical properties, namely LogD 
(lipophilicity for ionizable compounds) and binding affinity and 
showed that the latent space learns some but not all chemical 
characteristics from SMILES strings (18). 
	 Evidently, SMILES-based autoencoders can encode 
certain chemical properties, but no study has yet compared 
whether some properties are preferentially encoded. The 
latent space is constantly changing during training; therefore, 
by examining this latent space at various stages, we can 
determine the order and extent to which certain properties 
become encoded in the latent space. We trained a SMILES-
based generative autoencoder to investigate how the 
following important chemical properties are represented in 
the latent space by probing the density, smoothness, and 
diversity of the latent space: the partition coefficient (LP), 
average molecular weight (MW), number of hydrogen bond 

donors (HBD), number of hydrogen bond acceptors (HBA), 
and topological polar surface area (TPSA) (Figure 1). 
With the exception of TPSA, these properties are cited in 
Lipinski’s Rule of 5, a rule used for drug design to determine 
a molecule’s suitability as a pharmaceutical drug (19). TPSA 
is also used to predict the ability of a drug to pass through the 
blood-brain barrier in the human body (20). We focus on the 
above properties due to their importance for assessing the 
viability of drug candidates. 
	 We hypothesized that the model would encode MW 
the best out of all tested chemical properties, because it is 
least dependent on molecular structure. We also predicted 
that the model would overfit the chemical properties of the 
training set. The results indeed showed that MW has the 
strongest correlation with the location of molecules within the 
latent space. Furthermore, generated molecules had similar 
structural and chemical properties as the molecules in the 
training set. We concluded that SMILES-based autoencoders 
may not be ideal for molecular generation due to their 
difficulty encoding more complex properties. In addition, the 
generative capabilities of these models are limited to the 
properties of the training set, even though such overfitting is 
not obvious during training. Our study suggests the need to 
develop alternative architectures for better results.

RESULTS
Model architecture & training
	 We used a basic autoencoder architecture to construct the 
model, where both the encoder and decoder contain a gated 
recurrent unit (GRU) and the latent vector is of size 64 (Figure 
2A). The encoder GRU performs a sequence-to-vector 
operation, and the decoder GRU performs a sequence-to-

Figure 1: Graphical abstract of the study. We trained an autoencoder using the ChEMBL dataset to compress small molecule SMILES 
into a latent vector, and generated molecules by sampling random points in the latent space. We analyzed the latent space and chemical 
properties of generated molecules at different stages of training.
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sequence operation. The encoder GRU converts the one-
hot encoded SMILES sequence to the latent vector. A dense 
layer reshapes and transforms the encoder GRU output into 
an intermediate representation referred to as the latent vector. 
A second dense layer modifies the latent vector prior to 
feeding into the decoder. The decoder recreates the original 
SMILES sequence one character at a time using contextual 
information from both the latent vector and characters earlier 
in the sequence. The latent vector represents context from 
the entire molecule and is used to set the initial hidden state 
of the decoder GRU. This hidden state is modified by each 
character of the predicted sequence as it is generated. 
	 For model training and evaluation, we used a portion of 
the ChEMBL22 dataset containing 500,000 unique SMILES 
strings with a maximum length of 100 characters (21). The 
SMILES strings were tokenized, one-hot-encoded, and 
modified with start and end tokens as described in a previous 
study (14). The training process involved a reconstruction 
task where an input SMILES string was reconstructed after 
being passed through the model. 
	 In order to investigate model characteristics at various 
stages in the training process, we saved a copy of the model 
at seven checkpoints: 1, 5, 10, 20, 50, 100, and 200 epochs. 
Analysis of the accuracy and loss showed a consistent 
improvement in model performance on both training (94.66%) 

and test (94.73%) sets (Figure 2B). The accuracy continued 
to increase at 200 epochs, suggesting that higher accuracy 
may be obtained given a longer training time. To visualize 
how the distribution of information across latent dimensions 
changed as the model trained, we plotted the kernel density 
of latent vector values for 1000 randomly chosen molecules 
from the training set at each checkpoint (Figure 2C). Values 
ranged from zero to one because of the sigmoid activation 
function in the latent dense layer. The distribution of values 
in the latent dimensions began highly skewed at earlier 
checkpoints but transitioned to a more normal distribution 
at later checkpoints. At 200 epochs, the latent dimension 
density plots had nearly all relatively normal distributions in 
contrast to the density plots at 1 epoch, which were skewed.

Visualizing the latent space
	 In order to determine whether the five chemical properties 
of interest (LP, MW, TPSA, HBD, HBA) are encoded by 
the latent vector, we visualized the latent space as the 
model was trained. For 200 randomly chosen molecules 
from the training set at each checkpoint, we plotted the 
pairwise Euclidean distance between latent vectors against 
the difference in their chemical property values. We then 
calculated the Pearson’s correlation coefficient for each 
plot (Figure 3A). A high average correlation between the 

Figure 2: Architecture of SMILES-based GRU autoencoder, and evolution of model accuracy and latent space over epochs. A) Model 
architecture with layer dimensions, where len represents the length of the padded SMILES sequence. A latent space with 64 dimensions was 
empirically chosen. B) Training accuracy curve for the model over 200 epochs. C) Kernel density plots of the latent space at the specified 
epochs, showing 5 randomly chosen latent dimensions. As training time increases, the density of molecules along each latent dimension 
becomes more normally distributed. X axes: value along the latent dimension. Y axes: number of molecules. 
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Euclidean distance and chemical property distance would 
suggest that the model had learned to differentiate molecules 
by the corresponding chemical property, i.e., the latent space 
encoded that property. Interestingly, the properties displayed 
high correlation coefficients at 1 epoch and then sharply 
decreased before increasing again. The magnitude of these 
coefficients differed significantly between properties. For 
example, MW consistently exhibited the highest correlation 
coefficient while the lowest correlation coefficients belonged 
to LP and HBD. However, no correlations were negative. 
	 As another way to visualize the encoding of chemical 
properties throughout the latent space, we conducted 
principal component analysis (PCA). PCA plots provide 
a two-dimensional projection of the latent space, where 
molecules closer together in the PCA plot tend to have closer 
latent vectors. Chemical property values were represented as 
different shades of color (Figure 3B). The presence of a color 
gradient indicates that molecules in the same neighborhood of 
latent space have similar chemical properties. The gradients 

were the most visible for the property MW, indicating that 
molecules with similar molecular weight are close together 
in the latent space. Additionally, consistent with earlier 
results, the decrease in explained variance for the top two 
principal components (PC1 and PC2) shows that the variation 
in the data became distributed more evenly between latent 
dimensions as the model was trained for longer (Figure 3C).

Evaluating model overfitting
	 Next, we looked at the diversity of randomly generated 
molecules from the model. Latent vectors were randomly 
defined such that each element of the vector is between 0 and 
1. By converting these latent vectors to hidden states assigned 
to the decoder, random SMILES strings were generated. 
The randomly generated molecular structures became 
subjectively more complex as training time increased, as 
shown by the greater diversity of substructures (Figure 4A). 
Despite this, the relative distribution of rings and functional 
groups in generated molecules remained relatively constant 
(Figure 4B-C). In fact, the relative frequencies of these rings 
and functional groups in the generated molecules matched 
the relative frequencies found in the training set, suggesting 
that the model had overfitted the chemical structures of the 
training set (Figure 4B-E). 
	 The model can also generate variations of a target 
molecule, which we refer to as target-guided generation. 
From the validation set, a target molecule was chosen which 

Figure 3: Distribution of chemical properties across the 
latent space. A) Correlation coefficients of pairwise latent vector 
distances with property differences over training time. B) Principal 
component analysis showing the first two principal components (x 
and y axes, respectively) for each chemical property of interest at 
each checkpoint. LP, partition coefficient; MW, average molecular 
weight; HBD, number of hydrogen bond donors; HBA, number of 
hydrogen bond acceptors; TPSA, topological polar surface area. C) 
Percentage explained variance for PC1 (principal component 1) and 
PC2 (principal component 2) over training epochs. 

Figure 4: Molecules randomly generated by model. A) Randomly 
generated molecules from the latent space. 10 example molecules 
are shown for each checkpoint. Distribution of differently sized 
rings found in randomly generated molecules at each checkpoint 
(B) and in the training set (D). Large rings indicate rings with over 6 
atoms. Distribution of common functional groups found in randomly 
generated molecules (C) and training set (E).
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had very different properties from most of the training set 
(Figure 5A-B). This molecule was converted to a latent vector 
and nearby latent vectors were sampled by adding Gaussian 
noise with standard deviation 0.01. Thus, molecules similar 
to the target were generated (Figure 5C). Because latent 
vectors may yield invalid SMILES strings (e.g., incorrect 
syntax or incompatibility with RDKit), the success rate of 

generating molecules is less than 100%. During both target-
guided and random generation, the highest success rates 
were achieved very early during training and then fluctuated 
widely (Figure 5D). The generated structures became more 
similar to the target as training time increased, although the 
ranges of Tanimoto values, a measure of chemical similarity, 
were fairly large (Figure 5E). Additionally, the distribution of 

Figure 5: Variations of a target ligand produced via guided generation. A) Target molecule for guided generation. B) Properties of target 
molecule (red) in comparison with distribution of properties of train set (LP, the partition coefficient; MW, molecular weight; HBD, number of 
hydrogen bond donors; HBA, number of hydrogen bond acceptors; TPSA, topological polar surface area). C) Variants generated from the 
target molecule. 10 example molecules are shown for each checkpoint, if available. D) Success rates of both randomly generated (blue) and 
target-guided (orange) molecules, calculated based on the number of valid SMILES produced as a fraction of the total number of attempts. E) 
Tanimoto coefficient, a measure of molecular structure similarity, plotted for the target-guided molecules over training time.
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chemical properties in the randomly generated molecules 
were very similar to the properties found in the training set 
(Figure 6). The target-guided molecules were most similar 
to the target molecule in terms of MW, compared with other 
properties. Overall, we showed that the autoencoder model 
effectively encodes MW in the latent space but tends to overfit 
on the training data, resulting in a limited range of generated 
molecules even when guided using a target molecule.

DISCUSSION
	 SMILES-based machine learning models are a promising 
tool for generating novel small molecules for drug discovery, 
but researchers suspect such models may not be properly 
grounded in chemical understanding. In this study, we 
analyzed the distribution of chemical properties in the latent 
space encoded by a simple SMILES-based autoencoder 
across different training durations. The model replicated the 
input SMILES string with increasing accuracy over 1, 5, 10, 
20, 50, 100, and 200 epochs of training time. As the model 
was trained for longer periods, the latent representation of 
the molecule was more normally distributed across all latent 
dimensions. This study demonstrated two possible limitations 
of simple SMILES-based autoencoders. One, they poorly 
learn properties that rely on factors beyond the atomic 
composition of molecules. Two, the generative capability of 
these types of models may be restricted to the diversity of 
the training set. These results can inform the development 
of future molecular generative models which incorporate true 
chemical understanding. 
	 We investigated the extent to which five chemical 
properties (LP, MW, TPSA, HBA, and HBD) are encoded in 
the latent space. A property can be considered to be encoded 
by the model if molecules possessing different values of that 
property are well-separated in the latent space. Our results 
demonstrate that MW was the only property effectively 
learned by the model. Other properties were generally poorly 
encoded regardless of training duration. The differential ability 
of the model to learn various chemical properties suggests 
that there are fundamental limitations to the way a SMILES-
based autoencoder processes chemical information. In 

particular, we made a distinction between compositional 
properties (which depend mostly on the types and numbers 
of atoms present) and structural properties (which depend 
mostly on connectivity between atoms). Researchers 
have found that SMILES strings are not ideal for encoding 
structural information (16,22). For example, because TPSA 
is calculated additively using the PSA values of molecular 
fragments, in order to generate TPSA-relevant latent features 
a model must be able to encode the types and numbers of 
molecular fragments (20). Similarly, LP depends heavily on 
the presence of polar or nonpolar fragments, as lipophilicity 
is determined by intermolecular interactions and hydrogen 
bonds (23). However, the ability to reconstruct SMILES strings 
is independent of the ability to recognize fragments, because 
in many cases there is not a one-to-one correspondence 
between the presence of a fragment and the presence of a 
particular sequence of SMILES characters. Consequently, 
ways to mitigate this limitation have been proposed, including 
the use of heteroencoders, which reconstruct canonical 
SMILES strings to noncanonical SMILES strings or vice 
versa (24,25). Alternatively, the use of SMILES strings can 
be bypassed altogether with molecular graphs that directly 
encode atomic connectivity (26). 
	 We also observed the tendency for our SMILES-based 
autoencoder to overfit the training set, limiting the diversity 
of generated molecules. Several pieces of evidence indicate 
that this occurred. Firstly, the decreasing generative success 
rate after five epochs of training suggests the latent space 
becomes more sparse as training accuracy increases. In order 
to more accurately reproduce SMILES strings of the training 
set, the model may be increasing the distance between 
their latent representations. Secondly, there is considerable 
overlap between the distribution of structural fragments and 
chemical properties in the training set and a pool of randomly 
sampled molecules from the latent space. This means that 
the latent space is biased toward the chemical properties 
and molecular fragments found in the training set, perhaps 
by recreating verbatim segments of training SMILES strings. 
The overfitting phenomenon is intriguing in light of the fact 
that, during training, the training and validation losses do 

Figure 6: Property distribution of training set (top), randomly generated molecules (middle), and target-guided molecules (bottom). 
Red lines in the bottom row indicate property values of the target molecule (LP, the partition coefficient; MW, molecular weight; HBD, number 
of hydrogen bond donors; HBA, number of hydrogen bond acceptors; TPSA, topological polar surface area). The MW distribution of the target-
generated molecules is very tightly clustered around the MW of the target molecule at 200 epochs, whereas other properties are less similar. 
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not diverge. A possible explanation is that the molecules in 
the validation set are very similar to those in the training set. 
Thus, when the model learns how to reconstruct SMILES 
strings from the training set, it can apply this equally well to 
the validation set. 
	 Several changes could be made to this model to further 
analyze the capabilities of simple autoencoders. In order 
to keep this analysis simple, we designed this model with 
a single GRU layer in the encoder and decoder. Multiple 
stacked recurrent layers may allow the model to learn higher-
order patterns in the SMILES strings and ameliorate some 
of the previously mentioned limitations in encoding chemical 
properties. Moreover, some studies have found that Long 
Short-Term Memory cells may be better than GRUs at 
encoding higher complexity sequences (27). As a result, they 
may provide better molecular latent representations from the 
SMILES strings. Newer versions of autoencoders implement 
more complex architectures compared to the simple encoder-
decoder architecture found in our model. In a VAE, the addition 
of a special term to the loss function encourages the latent 
space to approximate a standard normal distribution (28). VAEs 
thus ensure that the properties being encoded in the latent 
space are not just a result of minimizing the reconstruction 
error between the input and the output, which could lead to 
overfitting. AAEs also use special loss functions to regularize 
the latent space (29). This makes it surprising that our vanilla 
autoencoder model generates a normally distributed latent 
space, despite the lack of explicit regularization. Examining 
the cause of this phenomenon, by decreasing the number 
of latent dimensions or changing the activation of the latent 
layer, for example, would be an interesting subject of future 
study. For example, a Gaussian layer inserted just before the 
decoder can add noise to the latent vector during training 
and make the decoder more robust to small deviations in 
the latent vector. Lastly, the training set can be expanded 
to reduce implicit bias. Although the ChEMBL dataset has 
been used as the training set in many generative models, 
other studies have used the subsets of the ZINC dataset, 
such as ZINC-250K, a dataset containing 250,000 molecules 
(5,11,14). The ChEMBL dataset is primarily generated from 
molecules used in disease research, those with high drug-
likeness and compatible with the human body (21). On the 
other hand, the ZINC dataset is specifically focused on ligand 
discovery for protein docking and is limited to commercially 
available compounds (30). Combining multiple datasets may 
improve the generative diversity of the model. 
	 As computational methods become increasingly important 
in the physical sciences, we must understand their abilities 
and limitations. Our work demonstrates that SMILES-based 
autoencoders can generate novel molecules, but their 
limited ability to control the chemical properties of generated 
molecules and go beyond the diversity of the training set may 
restrict their utility. Researchers should continue to develop 
and improve upon these computational tools in order to fully 
leverage their potential in drug discovery.

MATERIALS AND METHODS
Dataset
	 The ChEMBL22 dataset used in this investigation was 
downloaded from Kaggle, a community data science platform 
(31). 500,000 SMILES strings were randomly selected, with 
a maximum length of 100 characters. The dataset was split 

into a 9:1 ratio and filtered for compatibility with RDKit (an 
open-source toolkit for cheminformatics), resulting in a 
training set containing 449,685 molecules and a validation 
set containing 49,951 molecules. Similar to the process of 
tokenizing words or subsets of words in Natural Language 
Processing, dictionaries were constructed with an integer key 
for each unique SMILES character (with start and end tokens) 
in preparation for one-hot encoding. The final dictionary 
contained 39 unique characters (not including start and end 
tokens). One-hot encoding represents categorical data in a 
way that reduces bias in the model during training towards 
higher-value tokens, since everything becomes either 0 or 
1. The train and validation sets were one-hot encoded, and 
each SMILES string was padded with start and end tokens to 
a total length of 102 characters.

Model Details
	 The model consisted of encoder and decoder portions, 
each containing a GRU. The input was an array of one-
hot encoded SMILES characters with two dimensions: the 
length of the SMILES sequence and the number of unique 
characters in the dictionary (the length of each one-hot 
encoded character). A third dimension, the batch size of 
SMILES strings being fed into the model, was automatically 
prepended by Keras. The input layer was fed into the encoder 
GRU one character at a time, over a number of time steps 
equal to the number of characters in the SMILES sequence. 
At each time step, a hidden state was returned by the GRU 
that retained some information from previous characters. 
Consequently, when the entire SMILES sequence was 
passed through the encoder GRU, the final hidden state 
generated contained vital information pertinent to the entire 
SMILES sequence. This state is essentially a representation 
of the latent vector of the SMILES string. The output shape 
of the encoder GRU has two dimensions: the batch size and 
the recurrent unit size. The recurrent unit size represented 
the number of neurons in the GRU and was set as 100 for all 
occurrences of the unit in the model. The final hidden state of 
the encoder GRU was passed through another dense layer 
that had a dimensionality of 64, equal to the size of the latent 
vector. The output of this dense layer was the latent vector of 
the SMILES sequence.
	 The only constraint placed on the latent space is a sigmoid 
activation function, which limits the values to be between 0 
and 1. We chose to use the sigmoid activation function in the 
latent layer of the autoencoder because it limits the range of 
latent values, discouraging overfitting. Empirically, the effect 
of this constraint is similar to the regularization of the latent 
space in a VAE. 
	 The decoder portion of the model was used to convert the 
modified latent vector produced by the encoder model into an 
array of probabilities that determined the next character of the 
SMILES sequence. To convert the latent vector to a SMILES 
sequence, a second dense layer was required to transform 
the latent vector into the initial hidden state of the decoder 
GRU. The decoder GRU requires a starting input to base its 
prediction on, so the first input of the encoder (the start token) 
was reused as the input of the decoder GRU. The return_
sequences parameter of the decoder GRU was set as “True” 
since the unit has to output a character in every timestep up to 
the length of the entire SMILES sequence. Finally, the decoder 
GRU was passed into a dense layer with softmax activation. 
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The final output was the array of probabilities representing 
the next character in the generated SMILES sequence. The 
model was trained for 1, 5, 10, 20, 50, 100, and 200 epochs 
with the Adam optimizer, learning rate of 0.001, categorical 
cross-entropy loss, and batch size of 256. The loss function 
calculates the error between the predicted next character and 
actual next character, allowing the model to learn to correctly 
reconstruct the SMILES string.
	 In order to generate novel molecules, the original model 
was split into two separate portions: the encoder, which can 
convert a target molecule to a latent vector, and the decoder, 
which can translate latent vectors back to SMILES strings. The 
encoder portion was redefined with input and output layers 
extracted directly from the original model using the model.
getlayer() method in Keras that preserved the original weights 
in these layers. The decoder was defined similarly, except 
that the hidden states of the decoder GRU were preserved 
across batches because characters were inputted one at 
a time in independent batches. In contrast, during training, 
entire molecules were processed in a batch so that the 
states did not need to be preserved from previous molecules. 
The weights of the decoder GRU were transferred from the 
trained model using the model.get_weights() and model.
set_weights() methods. To generate a full SMILES string, the 
decoder model was run in a loop after setting the start token 
and latent vector. Generated characters were appended to 
the string until the model encountered an end token.
	 Two important characteristics of this training process were 
teacher forcing and input-output shift. Teacher forcing refers 
to the ground truth sequence (input) being fed character-wise 
into the decoder, so that every timestep the decoder uses 
the ground truth rather than its own output to generate the 
next prediction (32). Teacher forcing mitigated the problem 
of allowing errors to compound across timesteps. Input-
output shift was necessary in order for the model to satisfy a 
generative purpose. Specifically, the input and output strings 
were shifted by one, so that the input lacks the last end token 
and the output lacks the start token. When the model is used 
to generate novel molecules, it does so one character at a 
time, and the last generated character can be fed back into 
the decoder to generate the next character. Without shifting 
the input and output during training, a valid latent space may 
still be learned, but the decoder will always output the same 
character as the input.

Python Packages
	 For this project, we used Python 3.7 and Tensorflow 2.8.2 
running on Google Colaboratory with GPU acceleration. 
Scikit-learn 1.0.2 was used for PCA and Scipy 1.7.3 was 
used to compute the Pearson’s correlation coefficients. 
Plots were constructed in Python using Matplotlib 3.2.2 
and Seaborn 0.11.2. In addition to drawing the molecules, 
RDKit 2021.09.4 was used to calculate chemical properties 
and identify functional groups with the Descriptors, Lipinski, 
and Fragments modules. Tanimoto similarity values were 
calculated using the AllChem and DataStructs modules of 
RDKit.
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