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consumption may help cut the daily intake of added sugars to 
meet the recommendation of dietary guidelines (6).
	 Real-time, accurate nutrition information helps inform 
dietary decision-making (7). Many candy pieces are typically 
contained in a single package on which the nutrition facts 
label is printed. For instance, a Nestlé “Party Pack” includes 
60 pieces of each of the four candy types: Butterfinger, 
Crunch, Baby Ruth, and 100 Grand. The nutrition facts label 
provides each candy type’s per-serving nutrient portfolio 
(e.g., total fat, saturated fat, cholesterol, sodium, and total 
sugar). This presentation impedes candy consumers’ access 
to and assessment of relevant nutritional information for three 
reasons. First, two or more candy pieces make up a serving, 
so some “mental division” must be performed to convert 
the per-serving nutrient portfolio to per piece. Second, the 
nutrition facts label is generally not printed on the package 
of individual candy pieces, making it inaccessible during 
consumption. Finally, individuals often consume two or 
more candy pieces of the same or different types on a single 
occasion, increasing the cognitive load of calculating the total 
nutrient intake from candy even when per-serving nutrient 
portfolios are available (1).
	 Smartphone diet-tracking apps may help people monitor 
daily eating patterns, control weight, and manage chronic 
conditions (8, 9). A recent review found that diet-tracking 
apps scored well in usability, incorporated behavioral change 
constructs, and accurately coded daily energy and nutrient 
intakes (8). Diet-tracking apps have also been shown to lead 
to positive changes in dietary behavior (10). Most diet-tracking 
apps adopt deep learning as their core technology (11). Deep 
learning is based on artificial neural networks, in which 
multiple (“deep”) layers of processing are used to extract 
progressively higher-level features from data (12). The layered 
representation enables modeling highly complex, dynamic 
patterns, which finds its utility in analyzing “big data”, or data 
massive in scale and challenging to process (e.g., image, 
video, audio, and text) (13). Recent work has found that deep 
learning-based approaches, including image classification 
and object detection, may improve dietary assessment by 
optimizing efficiency and addressing systematic and random 
errors in self-reported nutrient intake (14, 15). As evidenced 
by the exponential growth of diet-tracking apps, nutrition 
experts and the general public increasingly demand food and 
diet monitoring automation (8, 9). This demand is best served 
through data collection and model building.

Building deep neural networks to detect candy from 
photos and estimate nutrient portfolio

SUMMARY
Approximately one third of American youth consume 
candy on a given day. Consuming excess candy 
contributes to added sugar intake and may lead to 
tooth decay and other health concerns. Diet-tracking 
apps may inform and help regulate candy consumption 
but depend on the availability of annotated candy 
image data and predictive models. A recent review 
documented differences in daily intakes of calories 
and macronutrients between app predictions and 
ground truths ranging from 1.4%–10.4%. Transfer 
learning-based deep neural networks could 
outperform those benchmarks and reduce the error 
margin. We built a dataset of 1,008 images comprising 
nine common candy types and developed four neural 
network models to detect candy pieces. The best-
performing model achieved a mean average precision 
of 0.8736 for localizing candy pieces of different types 
in the validation dataset and an accuracy of 99.8% for 
predicting the quantity and types of multiple candy 
pieces in the test dataset. By combining candy type-
specific nutritional information obtained from the 
nutrition facts label, the model accurately estimated 
(within an error margin of 0.5%) the aggregate nutrient 
portfolios, including total calories, total fat, saturated 
fat, cholesterol, sodium, carbohydrates, total sugars, 
and added sugars, of all candy pieces shown in an 
image. This study demonstrates the feasibility of 
automating candy calorie/nutrition counting using 
photos, which may facilitate the development of 
diet-tracking apps to provide real-time, accurate 
nutritional information to inform candy consumption.

INTRODUCTION
	 Approximately one-third of youth aged 2–18 years in the 
United States consume candy on a given day (1). On a day 
of candy consumption, consumers reported an average of 40 
g (176 kcal) of candy intake (1). Although candy contributes a 
relatively modest share of energy, added sugars, and saturated 
fat to the total diet of most consumers, binge candy intake by 
some individuals and during holidays (e.g., Halloween) has 
led to dental and other health concerns (1–3). The 2020–
2025 Dietary Guidelines for Americans recommends the 
consumption of added sugars be less than 10% of daily total 
energy intake (4). Candy is dense in added sugars but low 
in nutritional value (i.e., “empty calories”) (5). Limiting candy 
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	 Since artificial intelligence (AI) models are trained using 
examples (i.e., data) rather than based on “hard-coded” 
rules, data availability and quality play an indispensable 
role in AI model development and applications (16). Several 
food image datasets have been assembled to enable many 
deep-learning applications in human dietetics, such as Fruits 
360 (about 90,000 images of 131 fruits and vegetables) and 
Food-101 (about 100,000 images of 101 foods) (17, 18). 
However, systematically collected and annotated image 
data concerning commonly consumed candy types remains 
nonexistent. A recent review reported differences in daily 
intakes of calories and macronutrients (i.e., carbohydrate, 
protein, and total fat) between diet-tracking app predictions 
and ground truths ranging from 1.4%–10.4%, serving as the 
benchmark for AI-powered energy and nutrient auto-counting 
(8).
	 Given the discrepancy between actual and AI-predicted 
nutritional profiles, we sought to reduce the gap by applying 
state-of-the-art AI models to candy images. In particular, this 
study aimed to test the hypothesis that fine-tuning pre-trained 
deep neural network models to perform object detection 
tasks would enable accurate estimation of the number and 
types of candy pieces in a photo and their total nutritional 
portfolio (19).
	 Our study contributes to scientific literature in two aspects. 
First, we built and open-sourced a dataset containing images 
of nine popular candy types. Each image included four candy 
types and was annotated using bounding boxes to mark their 
positions, making the dataset suitable for training multilabel 
classification or object detection models. Second, we fine-
tuned four neural network models of different architectures 
to detect and localize candy types in an image. We adopted 
several evidence-based techniques to improve model 
performances, including transfer learning, data augmentation, 
normalization, and learning rate optimization. The YOLOv5 
model achieved the highest prediction accuracy among the 
four models on the validation and test datasets. Combined 
with candy-specific nutritional information, the YOLOv5 model 
predicted the total nutritional value (e.g., total calories, added 
sugars, cholesterol, and saturated fat) in an image containing 
multiple candy pieces of different types within an error margin 
of 0.5% compared to the ground truths.
	 In sum, the candy image dataset and deep neural network 
models developed from this study may advance the dietary 
tracking of candy consumption. Our study holds the potential 
to stimulate AI model deployment to promote informed, 
responsible candy intake as part of a healthy diet.
 
RESULTS
Dataset
	 We built and annotated a dataset of 1,008 images, which 
included nine candy types—Butterfinger, Crunch, Baby 
Ruth, 100 Grand, Snickers, Twix, 3 Musketeers, Milky Way, 
and Milky Way Midnight. Each image contained four candy 
pieces, each of a different type, surrounded by a rectangular 
bounding box labeled by type (Figure 1).

Model Selection
	 We randomly divided the dataset into training (806 
images), validation (101 images), and test sets (101 images). 
We hand-picked and fine-tuned four pre-trained models 
in IceVision with distinct architectures (Faster R-CNN, 
RetinaNet, YOLOv5, and EfficientDet) on the training set 
and evaluated their performances on the validation set using 
mean average precision (mAP) (Table 1). The YOLOv5 model 
achieved the highest mAP score of 0.8736, followed by 
EfficientDet (0.8377), RetinaNet (0.7547), and Faster R-CNN 
(0.6182). Thus, we chose YOLOv5 as the final model, given 
its top performance in predicting the candy types (i.e., labels) 
and corresponding bounding box locations. The model is also 
light in size (27.1 MB).

Figure 1: Sample annotated images. Individual candies are 
annotated with labels and rectangular bounding boxes.
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Visualization of Model Predictions
	 We presented side-by-side examples of the ground 
truth annotations (i.e., bounding boxes and labels) and 
corresponding YOLOv5 predictions on the test set (Figure 
2). The locations and sizes of the predicted bounding boxes 
closely resembled the ground truths, and labels were correctly 
predicted with high confidence.

Combining Nut Nutrient Information with Model 
Predictions
	 The study goal was to train a model to identify the quantity 
and types of candy pieces in an image, which allowed the 
calculation of the aggregate nutrient portfolio, such as total 
calories and added sugars, rather than each candy piece’s 
precise location (i.e., bounding box). Therefore, we counted 
the number and proportion of matches between the ground 
truth labels and YOLOv5-predicted labels in the test set. 
Specifically, we created two matrices, one for ground truth 
labels and the other for predicted labels. In either matrix, each 
row represents a single image in the text set, and the nine 
columns denote the respective candy types. Each cell value 
in the ground truth (predicted) matrix documented the ground 
truth (predicted) quantity of a specific candy type in an image. 
We compared the value of the corresponding cell between the 
two matrices and made a total of 909 cell-level comparisons 
(101 images x 9 candy types per image). A match was defined 
if two corresponding cells in the two matrices share the same 
value. There were 907 matches among the 909 comparisons, 
achieving a prediction accuracy of 99.8% by the YOLOv5 
model.
	 We combined candy type-specific nutritional information 
(e.g., calories per serving) from the nutrition facts labels of the 
original candy packaging with the YOLOv5 predictions (i.e., 
predicted candy types and quantity in an image) to estimate 
the following eight aggregate nutrient portfolios: total calories, 
total fat, saturated fat, cholesterol, sodium, total carbohydrate, 
total sugars, and added sugars of all candy pieces shown in 
an image. We reported the discrepancies between YOLOv5 
predicted and ground truth nutrient portfolios (Table 2). 
Across the 12 nutrients, the percentages of discrepancies 
ranged from 0% (cholesterol) to a maximum of 0.43% (total 
fat). Our final model shows significant improvement over the 
previous benchmark of an error margin of 1.4%–10.4% across 
nutrients (8).

DISCUSSION
	 Consuming excess candy contributes to daily added sugar 
intake and may lead to tooth decay and other health concerns 

(2, 3). Diet-tracking apps may inform and help regulate candy 
consumption but depend on the availability of annotated 
candy image data, which, to our knowledge, remains absent. 
This study built a dataset of over 1,000 images comprising 
nine common candy types. Each candy piece in an image 
was annotated using a rectangular bounding box. Based on 
the dataset, neural network models were developed to identify 
and localize candy pieces. The final selected model, YOLOv5, 
achieved an mAP score of 0.87 in identifying candy types and 
corresponding locations in images and predicted nutritional 
content with an error rate of less than 0.5%. Based on the 
COCO dataset, YOLOv5 specializes in object detection and 
has achieved state-of-the-art performance. These findings 
confirmed the hypothesis that fine-tuning pre-trained deep 
neural network models could enable accurate estimation of the 
number and types of candy pieces in a photo and their overall 
nutritional portfolio. The study demonstrated the feasibility of 
using photos to automate candy calorie/nutrition counting. 
We have made the dataset and the model open source to 
facilitate data sharing and knowledge dissemination. 
	 Traditionally, deep neural network models required large-
scale datasets and were expensive to train, taking days or 
weeks to train and fine-tune a model, often resulting in a 
large carbon footprint (20). However, leveraging transfer 
learning, image preprocessing such as data augmentation, 
and learning rate optimization techniques showcased that a 
near-perfect prediction accuracy could be achieved using a 
modestly-sized dataset. The final model is also light in size. 
Embedded in a mobile app, users may use the model in 
real-time to estimate energy and nutrient intakes from candy 
consumption.
	 Besides candy consumption, candy images collected from 

Table 1: Model performances on the validation set measured 
by mAP. The mAP score denotes the highest mAP score a model 
achieved during the fine-tuning process, and the number of epochs is 
the number of iterations over the entire dataset at which the highest 
mAP score was obtained. The YOLOv5 model was chosen as the 
final model, given its highest mAP score over all four models.

Figure 2: Examples of ground truth annotations and 
corresponding YOLOv5 model predictions. A) and C) Ground 
truth and B) and D) Model prediction annotations. “x%” denotes 
the YOLOv5 model predicted probability of a candy label. Multiple 
orientations and positions of the same candy pieces helped train the 
models to robustly recognize the candy objects from different angles 
and improve model generalizability to new, unseen data.
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current and future projects can be easily merged with other 
food image databases, such as Food-101, to build neural 
network models that can detect a wide variety of food types 
(18). Such applications can be powerful tools to automate daily 
diet monitoring, substantially reducing the cognitive burden of 
those who need to monitor their caloric and nutrient intake for 
disease or weight management (8, 9). Data collected from the 
diet-tracking apps may also inform nutritionists and dietitians 
and facilitate their intervention design or evaluation.
	 Various psychosocial factors, such as motivation, 
desire, self-efficacy, attitudes, knowledge, and goal setting, 
may impact people’s dietary behavior (21, 22). While real-
time, accurate dietary intake measures are valuable, such 
information alone is insufficient to motivate behavioral change 
(23–25). Besides building more powerful and efficient AI 
models, developers should consider integrating appropriate 
theoretical constructs for health behavior change into those 
diet-tracking apps (26). In particular, they may target these 
psychosocial factors to help users adopt and sustain a 
healthier diet (10).
	 This study has several limitations. First, the dataset was 
modest in size and candy types. Substantially expanding 
the candy types in future efforts is necessary to enhance 
the dataset and model’s generalizability and applicability. 
Second, the study serves as a proof-of-concept experiment to 
demonstrate the feasibility and potential usefulness of training 
a neural network model to detect candy pieces in a photo. 
However, many questions remain to be answered. Could 
the model achieve desirable prediction accuracy given user-
provided candy images, which may deviate from those used 
to train the model (e.g., different resolution, angle, or lighting)? 
How can the model size be reduced without compromising 
its accuracy to meet real-world needs where low-end mobile 
devices have more constrained storage space? Those who 
do not have a smartphone but want to use the diet-tracking 
apps may upload images to the cloud for the neural network 
model to make inferences. Images are one of the many ways 
people may interact with AI systems, and other popular modes 
include but are not limited to voice, text, video, and sensors 
(27). Multimodal human-machine communication could 
improve model performance and reliability (28), but relevant 
experiments remain scarce in diet interventions. Moreover, 

the current project used about 25 samples per candy type, 
which may not be enough for generalizability. We plan to 
add more samples to the database to enhance data diversity 
in future endeavors. We compared our model prediction 
accuracy with some benchmarks achieved by previous AI-
powered diet-tracking apps (8). However, since no previous 
work has estimated the nutrient portfolios of candy products 
and the benchmarks pertained to daily total calories and 
nutrient intakes, such comparison is far from ideal. We also 
hand-selected four popular deep neural network models with 
distinct architectures. Still, hundreds of other models exist, 
and some might outperform the YOLOv5 model. We could not 
expand the model list due to our budget and time constraints. 
Finally, the YOLOv5 model was chosen as the final model, 
given its highest mAP score over all four models. However, 
because each model was only fine-tuned once, no statistical 
testing was involved in comparing mAP scores across 
models. Although statistical testing could be desirable, it will 
involve heavy computation and can be economically and 
environmentally burdensome with a large carbon footprint.
	 In conclusion, limiting candy consumption may help cut 
daily intake of added sugars to meet the recommendation 
of dietary guidelines. We built and annotated a dataset 
containing 1,008 images of nine commonly consumed candy 
types. Neural network models were trained on the dataset to 
detect candy pieces of different types. The nutrient portfolios 
of candy pieces estimated by the final model were nearly 
identical to the ground truths in the test set. The dataset and 
model may facilitate the development of diet-tracking apps to 
provide real-time, accurate nutritional information to inform 
candy consumption.

MATERIALS AND METHODS
Data
	 We purchased two packs of candy from a local store—a 
Nestlé “party pack” containing 60 “fun size” pieces of four 
candy types (Butterfinger, Crunch, Baby Ruth, and 100 
Grand) and a Mars pack containing 125 “minis party size” 
pieces of five candy types (Snickers, Twix, Musketeers, Milky 
Way, and Milky Way Midnight). Given the nine candy types, 
there are a total of 126 unique combinations of four candy 
types. For each combination, we took eight photos, each 
containing four candy pieces, one for each type. The candy 
pieces were placed on a grey rug to improve the identification 
of candy pieces. Before taking each photo, we swapped 
candy pieces and rearranged their positions and sides. A 
Canon PowerShot SX540 digital camera was used to take 
photos. The dataset contained 1,008 (126 × 8) images in total. 
All images in the dataset were annotated using VGG Image 
Annotator (VIA) (29). In an image, a rectangular bounding 
box was manually drawn around each candy piece with its 
type labeled. Following standard practice, the dataset was 
randomly split into three subsets: the training set (80% of the 
dataset or 806 images), the validation set (10%, 101 images), 
and the test set (10%, 101 images). This dataset is publicly 
available at: https://www.kaggle.com/datasets/ruopengan/
candy-brands-for-object-detection. 

Model
	 Neural network models were trained to detect and localize 
candy pieces and their positions given by the rectangular 
bounding boxes in an image using the IceVision module in 

Table 2: Percentages of discrepancies between model-
predicted and ground truth image-level aggregate nutrient 
portfolios. The predicted mean denotes the average nutritional 
value calculated from the YOLOv5 model-predicted number and 
types of candy pieces in the test images (n = 909). The ground truth 
mean denotes the average nutritional value calculated from the 
actual number and types of candy pieces in the test images. The 
percentage of discrepancy was calculated by subtracting the model-
predicted from the actual nutritional value, dividing it by the actual 
nutritional value, and then taking the average.
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Python (Figure 3). IceVision is a computer vision framework 
offering a curated collection of many high-performance pre-
trained models from Torchvision, MMDetection, YOLO, and 
EfficientDet. It orchestrates an end-to-end deep learning 
workflow to train models with robust libraries such as PyTorch 
Lightning and fastai2.
	 Given our modest sample size (1,008 images), the best 
practice called for transfer learning, which enables the 
knowledge gained while solving one problem to be applied to 
a different but related problem (30). For example, knowledge 
obtained while learning to recognize apples, stored as 
trainable weights in a neural network model, may be used 
when building a different model to identify avocados. We 
experimented with four pre-trained models—Faster R-CNN, 

RetinaNet, YOLOv5, and EfficientDet. These models have 
different architectures and were widely adopted in object 
detection tasks.
	 The original images taken by the camera had a height of 
3,864 pixels and a width of 5,152 pixels. The images were first 
resized to 512 × 512 pixels through cropping (random cropping 
for the train set and center cropping for the validation set). 
After data augmentation (described below), the images were 
further resized to 384 × 384 pixels before being consumed 
by the models. fastai2 supports this progressive resizing 
technique to enhance model performance.
	 Three evidence-based techniques were used to boost the 
model performance—data augmentation, normalization, and 
learning rate optimization. Data augmentation is a technique 
to increase the diversity of the training set by applying random 
but realistic transformations, effectively preventing model 
overfitting (i.e., model fitting exactly against its training data 
while losing generalizability to new, unseen data). Before 
being consumed by the model, images in the training set went 
through a data augmentation pipeline consisting of resizing, 
zooming, cropping, rotating, and contrast changing. Data 
normalization ensures that each input parameter (image pixel, 
in our case) shares a similar statistical distribution, which helps 
model convergence. Learning rate (LR) plays an essential 
role in model training. If the LR is too low, it will take a long 
time to train the model; if the LR is too high, the model may 
take too large steps and overshoot where the optimal model 
resides. The LR finder in fastai2 implements the cyclical LR, 
enabling the LR to oscillate between reasonable boundary 
values during training (31). The optimal LRs identified by the 
LR finder were used for pre-freezing and post-freezing model 
training.
	 A two-step model training strategy was adopted. In the first 
step or pre-freezing phase, an object detection model head 
(tasked with candy piece localization and type classification) 
with randomly initiated weights was trained on top of the 
backbone pre-trained model with its layers, namely trainable 
weights, frozen. In the second step or post-freezing phase, all 
model layers were unfrozen and trained simultaneously. The 
use of data augmentation anticipated more iterations in model 
training, so pre-freezing and post-freezing training took 10 
and 20 epochs, respectively. The pre-freezing model with 
the lowest validation loss was used to train the post-freezing 
model, and the post-freezing model with the lowest validation 
loss was retained as the final model. The final model was 
tested on the test set, with predictions compared to the ground-
truth labels. mAP was used to evaluate model performances. 
The mAP compares the ground-truth bounding boxes to the 
model-predicted ones and returns a score ranging from 0 to 
1, with a higher score denoting a greater precision level. All 
models were built in Google Colab Pro using Python 3.10 as 
the programming language. A Tesla V100 GPU accelerated 
the model training.
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