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function, which is a mathematical function that describes the 
properties of a quantum mechanical system, collapses, re-
ducing the described object to a single physical state. This 
collapse of the wave function during observation is a funda-
mental aspect of quantum mechanics and distinguishes it 
from classical mechanics (1-3).
	 The Schrödinger equation is the central equation of quan-
tum mechanics that governs the wave function of a particle 
in a potential (3). In one dimension, the time-independent 
Schrödinger equation is stated as follows:

where ψ is the wave function, V is the potential, m is the mass 
of the particle, ħ is the reduced Planck’s constant h/2π and 
E is the total energy of the system (kinetic energy + potential 
energy). The first term relates to the kinetic energy of the sys-
tem and the second term relates to the potential energy of the 
system. Equation (A) can also be expressed as follows: 

Where Ĥ is the Hamiltonian operator, which is associated with 
the total energy of the system and is defined as

The wave function is related to the probability density func-
tion ρ by:

The probability that the particle can be found on the interval 
[a, b] is given by the area underneath the curve between a 
and b values:

Since the particle must be somewhere in space, the total area 
under the probability density function must be one, and thus, 
we get the following normality condition for the wave function:

	 Finding exact solutions to the Schrödinger equation can 
be very challenging in most cases, and it may be impossible 
to solve the equation analytically depending on the form of 
the potential (3). However, we can generate approximations 
that are very close to the true wave function using computa-
tional methods. To do this, we must discretize the Schrödinger 
equation, which turns the continuous functions and operators 
into their discrete counterparts. We considered the values of 
the wave function on a lattice, a regular grid of points in space, 
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SUMMARY
The Schrödinger equation is a fundamental equation 
in quantum mechanics that describes the behavior 
of particles in terms of wave functions. These wave 
functions provide a probabilistic description of where 
the particle is likely to be found, making them a crucial 
tool for understanding how particles interact with their 
environment. Methods for solving the Schrödinger 
equation analytically tend to be very mathematically 
complex, leading us to look for other ways to solve 
the Schrödinger equation. Unfortunately, in most 
cases, the Schrödinger equation cannot be solved for 
an exact solution. There are methods, however, for 
approximate solutions. In this paper, we investigated 
the Lanczos algorithm, a computational method 
that can solve the 2D Schrödinger equation in cases 
where finding an analytical solution would not be 
feasible. We discretized the Schrödinger equation, 
then ran a Python program using the Lanczos 
algorithm to solve for the ground state wave function. 
We hypothesized that the Schrödinger equation could 
be solved computationally for the ground state wave 
function using the Lanczos algorithm. We found 
that this method efficiently solved the Schrödinger 
equation for complicated 2D potentials. Additionally, 
we verified the accuracy of the method by comparing 
the results with wave functions from problems with 
known, exact solutions.

INTRODUCTION
	 Science is essential to comprehending life, technology, 
and our universe, but to understand the workings of every-
thing around us, we must delve into the behavior of micro-
scopic particles. Quantum mechanics is a branch of phys-
ics that deals with these particles and their interactions on 
the atomic and subatomic scale. On these scales, particles 
behave in ways that differ significantly from objects in every-
day life. In classical mechanics, objects can only occupy one 
place or state, which can be measured. However, small par-
ticles, such as atoms and electrons, do not behave according 
to the rules of classical mechanics. In fact, according to quan-
tum mechanics, these particles can exist probabilistically in 
multiple (sometimes infinitely many) states at the same time, 
which contain information about the particle’s position, mo-
mentum and energy. This property of a quantum mechani-
cal system is called the superposition of states. Specifically, 
the superposition of states is defined as a linear combination 
of all the system’s possible configurations with specific prob-
abilities. When the object is observed or measured, the wave 
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each representing a discrete location in space, and used a nu-
merical approximation for the derivative. When represented 
in a discretized form, the Hamiltonian is a Hermitian matrix, 
a matrix that is equal to its own conjugate transpose and has 
real eigenvalues (3). Looking for a method that finds the low-
est eigenvalue and corresponding eigenvector of a Hermitian 
matrix (representing the lowest energy state of the system 
and the ground state wave function respectively), which ap-
pears in the discretized version of Equation (A), we found the 
Lanczos algorithm, a common method for finding eigenvalues 
and eigenvectors of Hermitian matrices (4). The Lanczos al-
gorithm gives us a way to solve Equation (A) computationally 
for the ground state wave function and associated energy E0, 
the lowest possible energy state for the system. The Lanczos 
algorithm is much faster than direct diagonalization, which 
would be required for finding eigenvalues and eigenvectors 
of a matrix in general. This is because the Lanczos algorithm 
has a time complexity of O(n2), whereas direct diagonalization 
has a time complexity of O(n3) (4,5). The Hermitian nature 
and sparsity of the matrix representation of the Hamiltonian 
make the Lanczos algorithm an ideal method for finding the 
ground state wave function, producing fast and accurate re-
sults (3-5). 
	 There are other common methods for solving the dis-
cretized Schrödinger equation computationally such as the 
Matrix Numerov method (6). The Numerov method gives ap-
proximate solutions to 2nd order differential equations with no 
first order term, such as the time-independent Schrödinger 
equation in Equation (A). Like the method presented in this 
paper, the Numerov method relies on representing the Ham-
iltonian as a matrix and solving the resulting eigenvalue prob-
lem. While the Numerov method has the advantage of being 
able to provide any energy eigenstate of the time-independent 
Schrödinger equation and can produce accurate solutions for 
complicated potentials like the Lanczos method, it is not op-
timized for finding the ground state wave function. Therefore, 
it requires more computation to find the ground state wave 
function than the Lanczos algorithm, which is specifically 
designed for this purpose (4-6). Additionally, the Numerov 
method is primarily applied in one dimension and would need 
to be adapted for use in two-dimensional problems.
	 The Crank-Nicholson method is another numerical 
method commonly used to solve the Schrödinger equation 
computationally, particularly for time-dependent problems 
(7). Unlike the Lanczos method discussed in this paper, the 
Crank-Nicholson method is intended for time-dependent 
problems and relies on a backward and forward Euler meth-
od to approximate the values of the wave function at discrete 
steps in time and space. While it is true that the Crank-Nichol-
son method can be more computationally expensive than the 
Lanczos method for time-independent problems, it can give 
the time evolution of the wave function, which can be useful in 
many physical applications (4,5,7). It’s also worth noting that 
the Crank-Nicholson method can be particularly effective for 
simulating quantum systems in two or more dimensions (7). 
Ultimately, the choice of method will depend on the specific 
problem and the needs of the researcher.
	 The Lanczos algorithm is a common iterative method for 
computing eigenvalues and eigenvectors of a Hermitian ma-
trix, which represents the Hamiltonian. More specifically, the 
Lanczos algorithm efficiently computes a few of the largest 
and smallest eigenvalues and corresponding eigenvectors 

(4,5). The Lanczos algorithm has been successfully applied 
to solving the Schrödinger equation in various contexts, in-
cluding time-dependent problems, higher-dimensional sys-
tems, and higher energy states (5,8,9). This paper aims to 
provide an accessible introduction to the Lanczos method for 
solving the Schrödinger equation. In this paper, we focused 
on the Schrödinger equation in two dimensions. Therefore, 
we used an adapted version of Equation (A) for two dimen-
sional potentials.

Which can also be represented as 

Where Ĥ is given by

Here, the normality condition becomes:

The term “discretized” refers to the numerical approximation 
of a continuous function or equation by breaking it into discrete 
intervals or steps. In this paper, we use the discretized version 
of Equation (B) to solve the Schrödinger equation numerically 
as derived in the Materials and Methods section:

	 We implemented the Lanczos algorithm using Python3 
to numerically solve the two-dimensional discretized 
Schrödinger equation, given by Equation (D), for the ground 
state wave function. We observed that running the Lanczos 
algorithm with more iterations yielded a more accurate 
approximation of the wave function. Once we obtained the 
wave function, we normalized it to find the probability function, 
which we visualized in a color plot. We tested our algorithm 
for accuracy and efficiency with a series of three potentials 
V(x, y), including an infinite square well, a quantum harmonic 
oscillator, and a three-charge Coulomb potential. We tested 
accuracy by comparing wave function values generated 
by our algorithm to known, analytical solutions. We tested 
efficiency by studying the number of iterations needed for 
convergence and the run-time of the program. Our hypothesis 
was that we could effectively solve the Schrödinger equation 
in two dimensions using our method. We found that our model 
computed wave functions that matched known analytical 
solutions very accurately, with a difference between the 
approximate and exact wave functions of less than 10-16, in just 
a few seconds. Additionally, our method produced qualitatively 
accurate results for complicated potentials that cannot be 
solved analytically as it shows a greater probability of the 
particle being in lower potential regions, which is expected as 
the ground state wave function is the lowest energy state. Our 
results demonstrate that this method is effective for finding the 
ground state wave function for complicated potentials.

RESULTS
	 We implemented the Lanczos algorithm using Python 
to numerically solve for the ground state wave function of 
Equation (D) for a given input potential. The wave function 
output by the program provided a probability distribution 
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for the location of an electron in our grid. We simulated an 
electron by using a particle with the mass and charge of an 
electron. We first validated the program’s output for an infinite 
square well potential, for which the Schrödinger equation has 
a known analytical solution (7). Next, we tested the program 
on two more complicated potentials – the quantum harmonic 
oscillator and a three-charge Coulomb potential. Using a 
128 by 128 grid, we found that the eigenvalues of the wave 
function converged to the true values within 50-300 iterations, 
while minimizing unnecessary additional computational. The 
results demonstrate the efficacy of our method.

Potential 1
	 The first case we explored was a particle in an infinite 
square well, also known as the problem of a particle in a box, 
which has been solved analytically (10). Inside the box, the 
wave function behaves freely, as the potential is set to zero. 
The potential outside the box is infinite so the particle has 0 
probability of being outside the box (Figure 1A). We simulated 
this by applying the condition that the value of the Hamiltonian 
was 0 at the boundary of the box. In our model, the side 
length of our box was L = 127x10-9 m, with each grid space 
representing 10-9 m. After implementing the Lanczos algorithm 
for 300 iterations to find the ground state wave function, which 
took approximately 3.4 seconds, we found the probability 
distribution for the electron (Figure 1B).
	 We compared our approximate solution to the exact so-
lution to verify our methodology (Figure 1C) (10). The exact 
ground state wave function that we compared our solution to 
was (10):

The wave function obtained from the Lanczos algorithm close-
ly resembles the known analytical solution. Comparing the 
probability values of each point, we observed a maximum dif-
ference of 7.21x10-17 between the two functions (Figure 1D). 
To investigate the effect of grid size on accuracy, we ran the 

simulation on larger grids. On a 256 by 256 grid, we obtained 
a higher resolution solution but it required more iterations to 
achieve the same degree of accuracy. Running 1200 iterations 
took around 64 seconds and brought the calculated probability 
plot within 10-16 of the true distribution, as in the prior case. 
On a 512 by 512 grid, the program took around 5000 itera-
tions and 15 minutes to reach the same accuracy. In contrast, 
on a 64 by 64 grid, only 90 iterations and 0.25 seconds were 
necessary to obtain the same level of accuracy. These results 
demonstrate that the computational cost of running the algo-
rithm increases with the square of the grid size. Therefore, 
when choosing the grid size, one must balance computational 
cost against the needed accuracy of the solution. Larger grids 
produce higher resolution solutions but are computationally 
expensive to simulate.

Potential 2
	 The second potential we created was a quadratic poten-
tial well with a minimum at (64,64) (Figure 2A). The poten-
tial increases with square of the distance from this point, like 
the quantum harmonic oscillator but in two dimensions. The 
quantum harmonic oscillator is a case that has been solved 
for an exact solution where the potential energy is given by the 
square of the displacement from equilibrium (3). The potential 
is defined by an equation of the form

In this problem, r is the distance from (64,64) in meters and k, 
the wave factor, is set as 1016 J/m2.
	 Additionally, we placed a barrier at the edges of the 128 by 
128 box by creating a boundary condition that the wave func-
tion must be 0 at the boundaries of the box. Here we used a 
scale of 1 µm per grid space so that the side length of the grid 
is 128 µm. 
	 We ran the Lanczos algorithm 60 times, taking 0.8 sec-
onds, and generated a probability plot (Figure 2B). After 60 it-
erations, the eigenvalues generated by the Lanczos algorithm 
had converged to 10 decimal places, indicating that the al-
gorithm had produced a highly accurate approximation of the 
eigenvalues. This potential is likely impossible to solve analyti-
cally as it increases from the center in a radial nature, but the 
boundary is a square. However, the probability plot is consis-
tent with intuition. Since we solved for the ground state wave 
function, which is the lowest energy state of the system, we 
would expect the particle to be localized in regions with lowest 
potential energy, as demonstrated (Figure 2B). Comparing 
this probability plot (Figure 2B) with the plot from the previous 

Figure 1: Graphs for Potential 1- particle in a square box. A) 
Potential plot showing particle confined to a box. B) Probability plot 
calculated using 300 iterations of Lanczos algorithm in 3.4 seconds. 
C) Exact probability plot given by Equation (E). D) Difference between 
calculated probability plot and exact probability plot.

Figure 2: Graphs for Potential 2- 2D quantum harmonic 
oscillator. A) 2D quantum harmonic oscillator potential given by 
Equation (F). B) Probability plot calculated using 100 iterations of 
Lanczos algorithm.
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problem (Figure 1C), we can see that the probability drops off 
faster as we move away from the center, which makes sense 
as this problem has a potential well in the center. Additionally, 
this graph is similar in form to the probability plot found by Wai 
Kui Wong for another quadratic potential well using a different 
computational method for solving the Schrödinger equation, 
which contains ground state wave function plots for the infinite 
square well and 2D harmonic oscillator potentials (11).

Potential 3
	 Finally, we decided to create a more complicated poten-
tial to really test the strengths of this method to solve the 
Schrödinger equation. This potential was an electric poten-
tial generated using three protons, particles with a charge of 
+1.6x10-19 C, placed around the 128 by 128 grid (Figure 3A). 
The contribution from each of the protons to the potential was

where k = 9x109 N/m2C2 (Coulomb’s constant), e = 1.6x10-19 C, 
the magnitude of charge of an electron, and r is the distance to 
the point charge, where each grid space represents 1 nm. The 
protons were positioned at the following coordinates: (40,40) 
(65,100) (100,60).
	 This Schrödinger equation for this potential would be very 
difficult or impossible to solve analytically as it consists of 
three separate components that make up the overall potential 
(3). Our method gave us a fast and qualitatively accurate solu-
tion to this problem (Figure 3B). We ran this program for 100 
iterations, which took around 1.6 seconds. After 100 iterations, 
the eigenvalues generated by the Lanczos algorithm had con-
verged to 10 decimal places, indicating that the algorithm had 
produced a highly accurate approximation of the eigenvalues. 
Solving for the ground state wave function, the algorithm pre-
dicted the electron to most likely be near the three positively 
charged particles and very unlikely to be near the boundary, 
as the particle has a negative charge. This is consistent with 
our understanding of the Schrödinger equation, as the particle 
is more likely to be in a region of lower potential energy since 
it is in its lowest energy state.

DISCUSSION
	 Our program simulated the interactions of an electron with 
an input potential. It output a colored display of the probability 
plot, showing where the electron was likely to be. First, we ran 
the program on a potential that has been solved analytically, 
the infinite square well, which demonstrated the validity of the 

algorithm as the probability plot fell within 10-16 of the exact so-
lution in 300 iterations (10). Additionally, it produced accurate 
results in only 3.4 seconds, demonstrating the efficiency of the 
method. Then, we applied our method to two potentials that 
would be incredibly difficult or impossible to solve analytically, 
producing results consistent with those of other computational 
methods and with our understanding of the ground state wave 
function of the Schrödinger equation being the lowest energy 
state (3,11). The results establish the strengths of this method.
	 In the future, this method could be extended to three di-
mensional potentials. To do this, the 3D Schrödinger would 
have to be discretized in a similar fashion. The program could 
be altered to use a 3D version of the Hamiltonian and a 3D 
grid. However, this extra dimension would greatly increase the 
computational cost of this program (8). The results would also 
have to be visualized differently. Additionally, we could add 
time dependency (9). This would not affect our results for the 
probability plots of the ground state wave function. However, 
it would allow us to find nonstationary states formed by the 
superposition of eigenfunctions (3).
	 In most real-world cases, we must deal with a complicated 
potential where the Schrödinger equation cannot be solved 
exactly. For example, for larger atoms, it is impossible to find 
an exact solution to the Schrödinger equation describing the 
electrons (12). However, implementing this program in three 
dimensions could give us insights into the behavior of elec-
trons in atoms. Additionally, the Schrödinger equation has ap-
plications in the study of semiconductors. Semiconductors of-
ten have complicated, piecewise potentials that would be very 
difficult to solve analytically (13). 
	 Although this method works well in the given examples, it 
has its limitations. Since we used a discretized version of the 
Schrödinger equation, this method will not produce an exact 
solution, no matter how many iterations we use or how large 
we make the grid. Additionally, if we make the grid larger, the 
computational complexity of our model increases, and we re-
quire more iterations to produce accurate results. The Lanc-
zos algorithm has complexity O(n2), which is faster than other 
common algorithms such as exact diagonalization, which 
scales exponentially (4,5). However, on larger grids of thou-
sands or millions of points per side, this algorithm would take 
a considerable amount of time to run as each iteration would 
take longer and we would need more to produce accurate re-
sults. Overall, it appears that the computational time increases 
with the square of the grid size. Even if run on more powerful 
computers, the computational time would still increase quickly 
with larger grid sizes.

MATERIALS AND METHODS
	 To solve the Schrödinger equation, we developed a Python 
program (accessible through https://github.com/williamlongtin/
Lanczos) based on the Lanczos algorithm.

Hamiltonian operator
	 The Hamiltonian is an operator that gives the total energy 
of a system (kinetic plus potential). Acting on the wave func-
tion, the Hamiltonian,  is given by the following:

	 This is the time-independent Schrödinger equation, which 
has solutions called basis states. If a function ψ(x, y) is a solu-
tion to the time independent Schrödinger equation, it is called 

Figure 3: Graphs for the three point charge potential. Each grid 
space represents one nanometer. A) Three point charge potential 
given by Equation (G). B) Probability plot calculated using 100 
iterations of Lanczos algorithm.
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an energy eigenstate with eigenvalue E. These eigenstates 
are the allowed states the system may be in, and the eigen-
value gives the corresponding energy. Solutions to the time 
independent Schrödinger equation are discrete, so there are 
only energy eigenstates for certain energy levels. The lowest 
energy eigenstate is called the ground state wave function (2, 
3). In this project, we solved for the ground state wave func-
tion of an electron in a potential to make predictions about its 
location.

Lanczos algorithm
	 The Lanczos algorithm is an algorithm to find the eigen-
values and eigenvectors of a Hermitian matrix, a matrix that 
is equal to its conjugate transpose. The Hamiltonian can be 
discretized and approximated by a Hermitian matrix. We can 
solve for the eigenvalues and eigenvectors of this matrix using 
the Lanczos algorithm which proceeds as follows (4).
	 Given an n x n Hermitian matrix H, we would like to find 
the lowest eigenvalue and the corresponding eigenvector. We 
begin with an arbitrary vector v0 ∈ Cn with Euclidean norm one 
Initial iteration:

(Here, w'0* is the conjugate transpose of w'0.)

Then for j = 1, 2, …, n – 1,

	 Let V be the matrix with columns v0, v1, …, vn-1 and T be the 
tridiagonal matrix with α0, α1, …, αn-1 on the main diagonal, β1, 
β2, …, βn-1 on the lower and upper sub-diagonals, and zeros 
elsewhere. After we have found the matrix T, we can compute 
its eigenvectors and eigenvalues. There are many efficient 
algorithms for this, but we can do it using a Python function 
(SciPy eigh_tridiagonal). After the least eigenvalue λ and cor-
responding eigenvector x are computed, we can find the cor-
responding eigenvector of H as v = Vx which has eigenvalue λ. 
The eigenvalue and eigenvector are approximate. If we desire 
more accurate values, we can plug v back into the algorithm 
as v0 until the lowest eigenvalue converges to a fixed quantity 
(4).

Discretization of Schrödinger equation
	 In order to implement the Lanczos algorithm, we must rep-
resent the Hamiltonian discretely. The Schrödinger equation in 
two dimensions (Equation B) gives us:

We can numerically approximate the following:

Setting Δx = 1, we can have the following. We take Δx to be 
one as that is our spacing in the grid on which we solve for the 
ground state wave function.

It then follows that for Δy = 1:

Substituting these expressions into Equation (B), we get:

	 This is the discrete version of the Schrödinger equation (8). 
To solve for the function ψ, we must find the eigenvectors of 
the Hamiltonian. In particular, we are looking for the lowest ei-
genvalue and eigenvector, corresponding to the ground state 
of the system. 

Although the Hamiltonian here is not expressed as a matrix, 
we can still find its eigenvectors and eigenvalues using the 
Lanczos algorithm.

Writing a python program to solve the Schrödinger equa-
tion
	 To solve the discrete version of the Schrödinger equation, 
we encoded it in Python and implemented the Lanczos algo-
rithm to find the ground state wave function. First, we encod-
ed the Hamiltonian as a function that took the wave function 
and the potential as inputs. We set up the potential within a 
128x128 box, assigning a value to each of the 16384 points. 
We varied the scale of our model in the examples tested. 
	 In this program, we used NumPy, Matplotlib, and SciPy 
modules. We built this program to solve the Schrödinger equa-
tion on a 128 by 128 grid. First, we created a function that 
applies the potential to a square array. This allows the user to 
easily change the potential. Then, we implemented the Lanc-
zos algorithm as a function, taking a starting vector, mass, and 
charge as inputs. After applying the steps described in Refer-
ence (9), this function returns an approximation of the lowest 
eigenvector of a Hermitian matrix, using the SciPy eigh_tridi-
agonal function. Then, we defined a function that represents a 
discrete version of the Hamiltonian. This function is used when 
running the Lanczos algorithm. We ran the Lanczos algorithm 
using a particle with a charge of -1.6x10-19 C (the charge of an 
electron) and a mass of 9.11x10-31 kg (the mass of an elec-
tron) to simulate the interactions of an electron with the input 
potential. Additionally, we used ħ as 1.055x10-34 Js.  We used 
the output of the Lanczos algorithm as the input for the next 
iteration to produce more accurate results. We normalized the 
resulting wavefunction by dividing by the square root of the 
sum of the squared values, ensuring that the sum of the prob-
ability values in the probability density function would be one. 
Then, we plotted the potential and the probability density func-
tion using matplotlib. We repeated this process, testing the 
method for other potentials by editing the potential function.
	 Potential 1: Potential value inside 128 x 128 box is zero. 
The potential value outside the box is infinite, simulated by 
boundary condition that Hamiltonian of wave function is zero 
at boundary. In this example, the scale was one nanometer, , 
per grid space.
	 Potential 2: The potential was given by the equation:
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Where r is the distance from (64,64). In this example, each 
grid space represents 1µm. Here we took the value of k, the 
wave factor, to be 1016 J/m2.
	 Potential 3: The potential was created by three point charg-
es with charge +1.6x10-19 C positioned at the following coordi-
nates: (40,40) (65,100) (100,60). The potential due to each of 
the point charges is given by

where k = 9x109 N/m2C2 (Coulomb’s constant), e = 1.6x10-19 C, 
the magnitude of charge of an electron, and r is the distance 
to the point charge. Here we took each grid space to represent 
1 nm.To get the overall potential, we summed the three poten-
tials due to the three point charges.

APPENDICES
GitHub link:
https://github.com/williamlongtin/Lanczos
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