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fades, then eventually disappears through QS (3).
Many compounds have been reported to inhibit QS, 

such as quorum-quenching enzymes and honey (4–6). 
Quorum-quenching enzymes prevent QS by degrading the 
autoinducers released by each cell (4). One example is 
Manuka honey (MH), which shows anti-QS properties (7). MH 
can eliminate autoinducers in the environment while impacting 
the expression of certain genes involved in the QS cycle in 
bacteria (8, 9). Further, honey is an antimicrobial substance 
that slows down bacterial growth at low concentrations and 
delays the activation of QS (7–9). 

To measure and compare QS activity in different cultures, 
other studies relied mainly on average or peak illumination 
(10, 11). However, modeling the full QS activity cycle is crucial 
in characterizing QS curves that often have different shapes, 
delayed or earlier peaks, and varied illumination levels. 
Examining only a certain characteristic or a cross-sectional 
time-point of the curve excludes other curve details, leading 
to inaccurate results, so in this study, we modeled the full 
illumination intensity trajectories to evaluate and correctly 
rank QS activity in bacteria. 

To create different trajectories of illumination cycles, we 
variably inhibited QS, utilizing different concentrations of MH. 
To then characterize the QS cycles through time, we modeled 
QS trajectories by fitting Legendre polynomials within each 
honey concentration. We hypothesized that observing several 
curve characteristics through time can be used to provide a 
more accurate evaluation of QS activity in bacteria. Using 
cross-sectional or regular regression approaches to compare 
QS cycles was shown to be less accurate as compared to 
the proposed longitudinal approach. Longitudinal approaches 
can efficiently differentiate between the effects different 
substances, antibiotic drugs, and even genes have on the 
QS cycles of bacteria. The approaches used in this study can 
be implemented to not only V. fischeri, but also pathogenic 
bacteria. The robust approaches allow for illumination data to 
be accurately analyzed, thus providing information about the 
factors impacting QS in bacteria.

RESULTS
We first sought to examine and model multiple QS cycles 

of V. fischeri cultures varying in inhibitor strengths. To model 
and evaluate multiple QS (illumination) cycles, we used honey 
at concentrations ranging from 15–90 mg/mL as an anti-
QS substance and a control treatment of 0 mg/mL of honey 
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SUMMARY
Quorum sensing (QS) is the process in which bacteria 
recognize and respond to the surrounding cell 
density, and it can be inhibited by certain antimicrobial 
substances. In Vibrio fischeri, bioluminescence 
intensifies as more cells utilize QS, making it an 
accurate biomarker for QS. In this study, we showed 
that observed illumination intensity data measured 
at multiple time points is insufficient for evaluating 
and comparing QS activity across different cultures 
without proper statistical modeling. We introduced 
a statistical approach to characterize illumination 
trajectories over time using longitudinal data 
analytics. The approach was tested on the naturally 
illuminating bacteria, V. fischeri, which emit light 
when QS is activated, but it can also be implemented 
with green fluorescent protein (GFP) and its numerous 
applications. To compare multiple QS trajectories, we 
suppressed QS activity at varying levels using honey, 
known for its antimicrobial and anti-QS properties. 
We characterized and compared illumination 
trajectories through time in bacterial cultures 
containing five Manuka honey concentrations. The 
longitudinal approach analyzed illumination data 
throughout the entire QS cycle and correctly ranked 
bacterial cultures according to their true level of QS 
activity. Conversely, the conventional cross-sectional 
approach was inconsistent in evaluating bacteria 
for their QS activity and trajectory. We conclude 
that modeling illumination intensity through time 
provides a more accurate evaluation of QS activity 
than conventional cross-sectional analysis. 

INTRODUCTION
Quorum sensing (QS) is the process of cell-to-cell 

communication for the purpose of acquiring information 
about cellular density in the surrounding environment (1–3). 
Cellular density enables bacteria to behave in a collective, 
synchronized manner to regulate gene expression (1). 
Cells communicate by releasing signaling molecules called 
autoinducers. Other cells detect autoinducers as they are 
released into the environment. Once enough autoinducers 
are recognized, bacteria then express certain traits, such 
as illumination in the Gram-negative marine organism Vibrio 
fischeri (1, 2). Over time, bioluminescence peaks, gradually 

Maryam Abdel-Azim1, Ahmad Abdel-Azim2

1 Central Buck High School East, Doylestown, Pennsylvania
2 Harvard University, Cambridge, Massachusetts

https://emerginginvestigators.org/


16 DECEMBER 2023  |  VOL 6  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

DOI: https://doi.org/10.59720/22-227

(Figure 1). This created QS cycles with known trajectories; for 
example, the culture containing 15 mg/mL MH concentration 
(MH15) was expected to result in higher QS activity than 30 
mg/mL MH (MH30). We periodically recorded longitudinal 
illumination data and modeled using 7th-degree Legendre 
polynomials to estimate a curve for each concentration. 
A unique and accurate trajectory of illumination per MH 
concentration culture through time can be estimated by fitting 
separate time polynomials within each concentration. We 
then used these estimated curves to evaluate and rank the 
QS activity associated with cultures containing each honey 
concentration. Here, we used varying concentrations of 
honey to test the ability of the proposed longitudinal approach 
to rank QS activity in a consistent manner (i.e., greater honey 
concentrations result in lower QS activity). 

Observed illumination data (Figure 2) were regressed 
on concentrations (0 to 90 mg/mL) to test the hypothesis 
of nonzero pairwise differences between concentrations. 
Differentiating between the QS cycles of the V. fischeri 
cultures with different treatments is difficult since the cycle 
rankings vary through time. We ranked the model-estimated 
illumination intensity of each concentration culture according 
to their expected average illumination intensity (Figure 3A). 
There were no significant differences between concentration 
pairs {MH30, MH60} and {MH60, MH90} (p>0.05, Figure 
3B). Additionally, the QS cycles of treatment pairs {MH15, 
MH30} and {MH30, MH90} were significant at the 0.05 level.

Using partial data of the first 300 minutes limited the 
efficacy in evaluating QS activity (Figure 4). Regressing early 
illumination intensity data on concentration, while ignoring the 
rest of the QS cycle, failed to identify significant differences 
between concentration pairs {control, MH15}, {MH60, 

MH90} (p>0.05). Additionally, the pair {MH30, MH60} was 
significantly different at the 0.05 level.

To better characterize the change in illumination through 
time, we modeled QS trajectories within the five treatments 
studied by fitting a Legendre polynomial to the seventh 
degree within each concentration and the control treatment. 
First, a value for illumination intensity was estimated at each 
minute of the experiment, allowing for the development of a 
smooth curve within each treatment (Figure 5). Unlike the 
raw data of Figure 2, the properties of the cycle within each 
concentration were successfully differentiated when using 
the proposed curve approach (Figure 6). In addition to the 
clearly differentiated curves, we fitted the fitted curve data 
estimated at each minute as a dependent variable against 
concentrations as an independent variable in a regression 
model. All pairwise concentrations were highly significant 
(p<0.01, Figure 6). 

In addition to correctly ranking QS activities, the 
longitudinal approach identified important characteristics 
associated with each treatment. Higher concentrations of 
honey not only depressed peak illumination, but they also 
delayed the activation of QS (Figure 5). Compared against 
the control treatment, all MH-treated cultures yielded shorter 
and weaker illumination cycles (Figure 5). The MH90-treated 
culture had the lowest and most delayed peak of illumination. 
In addition to average illumination, these curve features 
can be used to further evaluate the degree of QS activity 
in bacterial cultures. Greater MH concentrations resulted in 

Figure 1: Experimental design to prepare cultures exposed to 
varying honey treatments. V. fischeri slant culture was used to 
prepare a liquid culture for the purpose of culturing five other vials 
containing varying amounts of photobacterium broth and honey. The 
same amount of bacteria was in each culture and the effect of honey 
was quantified throughout the study. Each MH concentration had 2 
replicates. This figure was created using BioRender.com.

Figure 2: The ranking of raw illumination intensity within each 
concentration varies through time, thus making it difficult 
to differentiate between treatment efficacy. Quorum sensing 
cycles of V. fischeri with different MH concentrations (0, 15, 30, 60, 
and 90 mg/mL of honey concentrations) were obtained using raw 
illumination data collected over the course of 1440 minutes. Data 
points represent the average ± standard deviation illumination from 
each treatment replication (n=4). 

https://emerginginvestigators.org/
https://doi.org/10.59720/22-227


16 DECEMBER 2023  |  VOL 6  |  3Journal of Emerging Investigators  •  www.emerginginvestigators.org

DOI: https://doi.org/10.59720/22-227

cultures having a more delayed and depressed QS cycles. 
We found that using cross-sectional regression approaches 
to compare QS cycles is less accurate as compared to the 
proposed longitudinal approach, which can efficiently and 
precisely differentiate between various levels of stress honey 
places on the QS cycles of bacteria.

DISCUSSION
To characterize the trajectories of QS in V. fischeri treated 

with five different inhibition concentrations and to study the 
change through time, we used longitudinal data approaches. 
While these approaches were able to detect and differentiate 
between QS cycles, conventional regression models failed 

since they ignored several important aspects of the QS 
cycle. For example, regular regression models revealed no 
significant differences between MH60 and either of MH30 or 
MH90 concentrations, while the longitudinal approach did. 
This study demonstrates the effectiveness and importance 
of accounting for several curve characteristics over time as 
the proposed longitudinal statistical approach yields more 
accurate results than regular cross-sectional approaches. 

The illumination curves created using Legendre 
polynomials allowed for an accurate characterization of all 
concentration cycles. The difference between trajectories 
and their peaks was visible and identifiable because there 
was an estimated illumination value at every minute of the QS 

Figure 3: Accuracy of detecting and differentiating between 
different QS cycles was decreased when studying the observed 
illumination data. Eight concentration comparisons of observed QS 
activity data are significantly different from each other (p<0.05) with 6 
comparisons being highly significant (p<0.01). Illumination intensity 
estimates for each concentration obtained from a regression model 
on all observed data are shown in (A). In the contrasts matrix (B), 
each square contains a p-value to test the difference between 2 
concentrations. A p-value higher than 0.05 indicates a difference that 
is not significantly different from 0. 

Figure 4: Cross-sectional analysis decreased accuracy of 
detecting and differentiating between different QS cycles. 
Eight concentration comparisons of observed QS activity data are 
significantly different from each other (p<0.05). (A) Illumination 
intensity estimates obtained from a regression model on observed 
data during the first 300 minutes of the QS cycle for each 
concentration. In the contrasts matrix (B), each square contains a 
p-value to test the difference between two MH concentrations (α = 
0.05). 

Figure 5: Ranking for treatment efficacy is clear when curve 
parameters are estimated within each treatment. Parameters 
estimated within concentrations of 0, 15, 30, 60, and 90 mg/mL were 
utilized to obtain an illumination estimate at every minute of the study 
(n=4). Illumination estimates represent the full QS cycle of each MH 
concentration treatment.

Figure 6: The proposed longitudinal approach yielded more 
accurate results than cross-sectional approaches. Ten 
concentration comparisons of observed QS activity data are highly 
significant (p<0.01). (A) Illumination intensity estimates for each 
concentration obtained from a regression model on longitudinally-
modeled data . In the contrasts matrix (B), each square contains a 
p-value to test the difference between 2 concentration treatments (α 
= 0.05).
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cycle. It is necessary to characterize the entire cycle of each 
concentration and not to rely on select sections of the data 
that were insufficient in differentiating treatment effects. 

Other studies, which rely only on the detection of illumination 
during certain parts of the QS cycle, might be missing 
important biological findings that contribute to the changes 
in illumination curves through time (10–13). Longitudinal data 
analytics are important in acquiring valuable characteristics 
by accurately modeling time trends. By measuring QS activity 
through time, we were able to discern the full effect of honey as 
an anti-QS substance on V. fischeri. Not only did it depress the 
entire QS cycle, but it also delayed the time of QS activation. 
This latter finding suggests that honey could be disrupting the 
ability of bacteria to sense its surroundings, so a higher cell 
density might be required for the bacteria to illuminate (8, 9). 
Since honey also affects bacterial growth, increased honey 
concentration treatments could not only be inferring with QS 
but also inhibiting cell proliferation. In further experiments, 
to differentiate the two processes, we could measure the 
absorbance of each vial to obtain a value for cellular density 
or use a hemocytometer to calculate the ratio of live to dead 
cells. Although the image analysis process was automated, 
the process of taking those digital images was not. Therefore, 
there are time points missing between minutes 500–850, so 
future experiments could avoid this problem by using a plate 
reader or an automated camera shutter system.

Longitudinal approaches can play a vital role in evaluating 
the efficacy of different substances or antibiotic drugs on QS 
activity in virulent bacteria. They also serve to evaluate the 
effect of a gene on QS activity in bacteria and contribute to 
a system’s pathway analysis process. By using the approach 
proposed in this study, longitudinal illumination data can be 
analyzed to obtain more robust results about the factors that 
impact QS in bacteria. 

MATERIALS AND METHODS
Broth preparation 

Photobacterium broth (Carolina Biological) was prepared 
at a concentration of 65.8 g/L. The mixture was thoroughly 
mixed and sterilized in a pressure autoclave for 50 minutes. 
Honey stock of 300 mg/mL was prepared with hydrated 
photobacterium broth and was used to make 4 different media 

with honey concentrations of 15, 30, 60, and 90 mg/mL. 

Bacterial culture
Sterilized broth was inoculated with V. fischeri bacteria 

(slant culture, Carolina Biological). The inoculated test tube 
was incubated for 24 hours on an orbital shaker set to 200 
rpm at 25°C. This liquid bacterial culture was prepared and 
incubated at 25°C for the next steps of the experiment.

Variation in QS activity was created by using different 
concentrations of honey in bacterial cultures. 

Two replicates of concentrations 15, 30, 60, and 90 mg/
mL, along with four replicates of the control treatment of 0 mg/
mL of the honey concentrations were used. Different amounts 
of media from the prepared concentrations were pipetted into 
their corresponding vials (Figure 1). 

Acquisition of digital images
High-resolution images were taken every 1–2 hours over 

a period of 24 hours of every replicate in each concentration 
(Canon EOS Rebel T7i camera) after the introduction of 
honey. The digital images were taken inside a dark chamber 
with a 30 s camera exposure to capture the light emitted by 
the bacteria. The camera settings and position were fixed 
throughout the experiment for consistency. Each image 
contained six vials, and two shots were taken of each set, for 
a total of four shots at every time point. 

Illumination detection from digital images
To obtain the average RGB value of each vial, images 

were cropped to sections with one vial each. RGB values 
of each pixel were averaged over an illuminating area and 
used to evaluate intensity of the area (3). The process was 
automated using Python and R studio to handle the hundreds 
of images taken throughout the experiment (14). 

Proposed longitudinal approach
Average pixel intensities associated with the digital images 

of each vial were fitted as a dependent variable against 
treatments in a statistical model. In regular linear regression, 
the following model was used to estimate the effect of each 
concentration on illumination, 

y = Xb + e [1]

where y is average pixel intensities, b is a vector of length 
5 representing concentration effects on illumination, and e 
is a random residual. The matrix X is an incidence matrix of 
288 rows by 5 columns of 0’s and 1’s. Rows of X represented 
observations, and columns represented the control, 15, 
30, 60, and 90 mg/mL honey concentrations. For each 
observation, a 1 was placed in the column that corresponds 
to the concentration where the observation came from. All 
other elements in the row were labeled as 0’s (Figure 7A). 

To solve for the components of b, we used equation [2] 
to obtain the regression coefficients of concentration on 
illumination:

Table 1: Polynomials of order 7 had the greatest adjusted 
R-squared value. R-squared and adjusted R-squared values vary 
for models with Legendre polynomials of orders 2 to 8. Polynomials 
of order 7 were utilized in the study due to its greater adjusted 
R-squared value.
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b̑  = (XT X)-1 XTy [2]
Note that b̑  is an estimate of the true b and XT is the 

transpose of X. 
Since the general time trend of illumination was being 

characterized, a polynomial of order p for time was fitted in 
the model to estimate p+1 parameters needed to characterize 
the general trend of illumination across all concentrations. 
The same model [1] can be used, except that the matrix X 
is modified to include the trend of time (Figure 7B). This, 
however, models a general trend through time across all 
treatments, but it does not achieve our objective of modeling 
a unique illumination trend specific to each concentration. 

Instead of estimating a single effect per concentration 
or a general time trend of illumination, the objective was to 
characterize an illumination curve per concentration through 
time. Model [1] can again be modified by using the model 
matrix described in Figure 7C. It was shown that the estimated 
cycle is more accurate in distinguishing illumination curves 
than a single summary statistic (i.e., concentration effects).

It is more favorable to use the orthogonal Legendre 
polynomials because the covariance between them is 
minimal compared to fitting direct polynomials of time. 
Legendre polynomials were utilized here due to their simplicity 
compared to other orthogonal polynomials. In Figure 7C, 
each ti is a random variable, of the scaled time in minutes, 
corresponding with observation i. Time is scaled from -1 to 1 
using equation [3]:

ti
 = -1 + 2(mi-a)/(b-a) [3]

where mi is time in minutes of observation i, and a and b are 
the minimum and maximum times of the study. Note that in the 
model matrix of Figure 7C, polynomial coefficients replaced 
the 1’s of the base model incidence matrix, expanding them to 
(p+1) coefficients, where p = 7. 

In this study, a polynomial of order 7 was chosen as it 
achieved the highest prediction accuracy as confirmed by the 
adjusted R-squared values (Table 1).

To further explain the statistical adjustment depicted in 
Figure 7, note that matrix X in Figure 7A corresponds to a 
model that attempts to estimate the effect of concentration 
without fitting time in a single-variable regression model. 
The structure of X in Figure 7B simply extends the model 
to multiple regression, where prediction is now based 
on multiple variables, concentration plus simple time 
polynomials. Finally, the structure in Figure 7C corresponds 
to another multiple regression where polynomials are now 
orthogonal instead of direct and are fit within each one of the 
concentrations studied. Fitting separate time polynomials 
within concentrations makes it possible to estimate a unique 
trajectory of illumination per concentration. 

Regression analysis to test pairwise concentration differences 
A linear regression model with illumination intensity as 

an independent variable and concentration as a dependent 
variable was fitted in R (4). The lm function in base R was run 

five times with the intercept removed and each concentration 
set as the reference level once. This allowed for the pairwise 
testing of zero differences between each two concentrations. 
We then constructed a matrix of contrasts to identify 
significant differences between each two concentrations for 
full and partial observed data, as well as for data predicted 
using the proposed longitudinal approach. A p-value less 
than 0.05 indicated that the difference between two varying 
concentration cultures was statistically significant.
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