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progressing through the other stages (2). 

 The above factors make glioblastoma extremely deadly, 
and cases are almost always lethal, with patients surviving 
on average less than 15 months after treatment (2). Fewer 
than 5% of people survive 5+ years after being diagnosed 
(2). Treatment for glioblastoma primarily consists of surgery 
followed by concurrent radiotherapy and chemotherapy 
with Temozolomide (4). However, it is not entirely adequate; 
reports indicate that the efficacy of this treatment module 
works better when MGMT, the only direct reversal DNA repair 
gene, is hypermethylated, which is seen in about 40–60% 
of patients (5). Therefore, there is an emergent need to 
identify new markers which could be used for understanding 
glioblastoma better and developing newer forms of therapy.
 One of the primary causes of cancers, including 
glioblastoma, are mutations that occur during the cell 
replication cycle (6). One small mutation can be passed on 
through this cycle multiple times until there are many cells with 
this mutation (7). Among the significant mutations that occur 
are insertion-deletion errors and base-base mismatches. 
These mutations cause genomic alterations. Insertion errors 
occur when extra base pairs are inserted, while deletion 
errors occur when base pairs are deleted mistakenly (6). 
Base-base mismatches occur when bases are improperly 
matched to each other. The mismatch repair pathway (MMR) 
is responsible for detecting and repairing these errors (8). A 
dysfunctional MMR potentially leads to mismatch errors and 
genomic alterations, which means the fraction of the genome 
altered (FGA) is greater. FGA is a measure that indicates 
the extent of genomic alteration and severity of cancer (9).  
Glioblastoma, being the most complex genomically among 
all tumors potentially harbors the highest genomic alterations 
(10). The MMR pathway acts downstream of MGMT, which is 
encoded by the MGMT gene, the methylation status of which 
is the most prominent prognostic and survival biomarker in 
glioblastoma (11,12). It would be worth evaluating if MMR 
may have a similar effective role as a biomarker. In addition, 
studying alternate DNA repair mechanisms is essential, as it 
may also play a role in therapy response to alkylating agents, 
the current standard of treatment for glioblastomas.
 Two essential genes of MMR are human Mut S homolog 
2 (hMSH2) and Mut S homolog 6 (hMSH6). These genes 
code for proteins that interact to form a heterodimer called 
MutSɑ (13). Together they are responsible for the detection 
of insertion-deletion errors and base-base mismatches. Both 
the hMSH2 and hMSH6 are essential in MMR and mismatch 
recognition will be impacted without their effective function 
(14). Previously mutations in hMSH2 and hMSH6 have been 
correlated with prostate cancer, endometrial carcinoma, and 
colorectal cancer, to name a few (15,16). In this in silico study 
(studies performed virtually using publicly available datasets), 

Mismatch repair is not correlated with genomic 
alterations in glioblastoma patients

SUMMARY
Glioma is the most common brain tumor of the glial 
cells with a highly infiltrative nature. A grade IV 
glioblastoma is the most malignant and aggressive 
presenting with complex mutations and a very high 
genomic alteration status. Glioblastoma patients 
have the fastest progression compared to other 
cancer patients and poor survival. Methylation status 
of MGMT, a gene encoding a DNA repair enzyme, 
is the only known promising biomarker. There is a 
need to look for new biomarkers in similar functional 
pathways. Two mismatch repair pathway (MMR) genes, 
hMSH2, and hMSH6, which function downstream 
of MGMT, appear as ideal targets. We hypothesized 
that a lower expression of hMSH2 and hMSH6 are 
associated with a higher fraction of genome-altered 
(FGA) which would influence survival. We conducted 
an in silico study using publicly available datasets 
consisting of clinical and experimental data. We 
obtained a weak positive correlation between hMSH2 
and hMSH6 with FGA. Sex specific analyses yielded 
a stronger significant positive correlation. However, 
overall the measures of correlation were too small 
as the component analysis indicated homology and 
validated the findings. Additionally, the expression of 
hMSH2 and hMSH6 did not affect overall survival. We 
conclude that in this cohort hMSH2 and hMSH6 did 
not indicate biological significance in causing FGA, 
nor were they effective biomarkers for survival as 
hypothesized. 

INTRODUCTION
 Glioma is the most complex type of brain tumor in the 
brain’s glial cells. The glial cells, which include astrocytes, 
oligodendrocytes, and microglia, support the nervous system 
and outnumber the neurons by three times (1). Glioma occurs 
in four distinct grades (I, II, III, and IV), classified based on their 
potency; grades III and IV are considered malignant glioma 
and are highly aggressive. Grade IV, known as glioblastoma, 
is the most malignant and accounts for about 54% of all brain 
tumors, making it the most common (2). Glioblastoma is 
extremely hard to treat due to its highly infiltrative nature—it 
does not have clear borders, making it difficult to excise the 
complete tumor surgically (3). Additionally, glioblastomas can 
occur de novo, meaning they can appear in grade IV without 

Joshua Selvan1, Tushar Patel2, Jeru-Manoj Manuel3

1 Hillsborough High School, Tampa, Florida
2 Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
3 SkoolMentor.com (Mentorconnect)



17 FEBRUARY 2024  |  VOL 7  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

https://doi.org/10.59720/22-226

we determined the effect of the MMR pathway on glioblastoma 
by analyzing the correlation of mRNA and corresponding 
protein expression of two critical MMR genes, hMSH2 and 
hMSH6, with the fraction of genome altered (FGA) using 
the patient data obtained from the datasets. We analyzed 
the genes’ roles as a potentially good indicator of functional 
outcomes (or biomarkers) for glioblastoma by analyzing their 
predictive efficacy. We hypothesized that a lower expression 
of hMSH2 and hMSH6 is associated with a higher fraction of 
FGA influencing poor survival.
 From the analysis performed, we determined a non-
significant correlation between hMSH2 and hMSH6 gene 
expression with FGA. Therefore, our hypothesis is rejected 
and shows that these genes appear to affect the FGA to a 
much lesser extent than we expected. Our data indicate that 
both genes cannot accurately predict prognosis or survival, 
so they are not good indicators of functional outcomes for 
glioblastoma. 

RESULTS
Cohort Characteristics and expression values
 The mean age for the chosen cohort of 366 glioblastoma 
patients was 59 years, and 61.7% were males. Our cohort 
characteristics were very similar to other research concerning 
the mean age and males having a higher incidence of the 
disease (17). The Karnofsky Performance Status (KPS) is a 
measure of the functional statuses of patient. A score of 80% 
or higher for a patient is considered good, and indicates that 
they are able to live normally with some to no difficulty (18). 
The KPS is good for 71.73% of the cohort, and their mean 
age is 55 years lower than the overall cohort based on the 
rationale established before (19). We found that the overall 
survival was relatively low, with 83.29% not surviving for five 
years after diagnosis (Table 1). Expression distribution of 
the two MMR genes for their mRNA and protein expression 
values are also reported (Figure 1). The mean and standard 
deviation values are as follows. Gene: hMSH2 (0.029 ± 1.024), 

hMSH6 (0.030 ± 1.027); protein: MSH2 (0.055 ± 0.888) and 
MSH6 (0.037 ± 0.863). Some variables reported in Table 1 do 
not have data for all patients in the cohort. 

Correlation and clustering analysis
 To validate the linearity between mRNA expression & 
respective protein expression with FGA, we performed a 
Spearman correlation test with 0.05 as the p-value threshold. 
We observed a positive correlation ρ (correlation coefficient) 
between hMSH2 and MSH2 expression (ρ=0.429; p=5.36 x 
10-7). Similarly, we found hMSH6 to have a significant positive 
correlation with MSH6 (ρ= 0.47; p-value: 5.64 x 10-8). This 
suggests that the transcriptional and translational control of 
gene expression is optimally regulated and coupled. 
 Our next goal was to see if hMSH2/6 play a critical role 
in altering the genome through correlation analysis. We 
found a very low (magnitude) positive correlation of 0.08 
between hMSH2 mRNA expression and FGA (p-value: 9.59 
x 10-2) (Figure 2a). MSH2 protein expression had a much 
higher positive correlation that was statistically significant (ρ 
= 0.31; p-value: 2.7 x 10-4) for correlation with FGA (Figure 
2g). Interestingly, we observed hMSH6 mRNA to be slightly 
more positively correlated with FGA than hMSH2 (ρ = 0.17; 
p-value: 5 x 10-4) (Figure 2b). For MSH6 protein (Figure 2g), 
the correlation is higher than the correlation for the gene 
(ρ=0.32; p-value= 2.5 x 10-4). Although there were a few 
statistically significant results obtained, overall the magnitude 
of correlation was not strong (small correlation coefficients) 
as demonstrated in Figure 3. 
 We further analyzed the correlations between the sexes to 
better understand the previous result and found that in females 
the correlation was positive and poor for both hMSH2 and 
hMSH6 (ρ = 0.06 & 0.02; and p-value = 4.5 x 10-1 & 7.7 x 10-1, 
respectively) (Figure 2c, d). However, males demonstrated 
a non-significant negative correlation for hMSH2 mRNA 
with FGA (ρ = -0.05, p-value = 4.4 x 10-1) (Figure 2e). 

Table 1. Cohort Clinical Characteristics (in %). Each variable is 
split into categories, and the relative frequency of each group was 
calculated. The mean age of each group is shown on the right. The 
total number of patients is given for variables with fewer data points. 
For KPS, 0-40%: (Death to Disabled); 50-70%: (Frequent Medical 
Care to Caring for Self); 80-100% (Normal Activity with Some 
Difficulty to Normal Health)

Figure 1. Histogram plots for gene and protein expression. 
Plots for distribution of mRNA/protein expression values for a) 
hMSH6 and b) hMSH2 following a gaussian trend. The magenta 
bar represents protein expression distribution in samples, while the 
purple represents mRNA expression.  

https://paperpile.com/c/vTZHpO/Jby7
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Interestingly, hMSH6 mRNA had a statistically significant 
positive correlation with FGA (ρ = 0.25215; p-value: 1.0 x 
10-4) (Figure 2f). The analysis for protein with FGA largely 
revealed statistically significant positive correlation (MSH2 
males: ρ = 0.24, p-value: 0.03; females: ρ = 0.4, p-value: 4 
x 10-3) (Figure 2h, i). MSH6 protein showed significance 
and higher positive correlation for males (ρ = 0.48; p-value: 
1 x 10-5) as seen in (Figure 2i), whereas females showed a 
lower non-significant correlation (ρ = 0.18; p-value: 2 x 10-1) 
for MSH6 protein (Figure 2h). The difference in correlation 
values among sexes indicate the diversity and complexity of 

the tumors. 
 To understand our data further, we next performed a 
Principal Component Analysis (PCA) analysis on five variables 
of interest: age, sex, hMSH2 gene expression, hMSH6 gene 
expression, and FGA to determine overall data clusters in 
the dataset (Figure 4). We were interested in obtaining more 
meaningful observations among smaller relevant groups. 
PCA analysis showed no significant clustering of the data 
points outside the origin, indicating a single dominant trend 
across the samples pool, therefore suggesting the need to 
rule out further investigations.

Figure 2. Correlation plots of hMSH2 and hMSH6 mRNA with FGA and MSH2/6 protein levels with FGA. Plots depict a biologically 
not significant correlation of MSH genes expression with FGA. The blue circles represent the correlation intensity (blue is the strong positive 
correlation and vice-versa for red). The grey boxed circles represent a statistically significant correlation; also, bigger the diameter, better the 
correlation magnitude.  a-b) The overall hMSH2: (ρ=0.08; p-value: 0.0959), hMSH6: (ρ = 0.17; p-value: 0.0005). c, d) Correlation of female 
patients' gene expression with FGA hMSH2 and hMSH6 (ρ = 0.06 & 0.02, respectively). e, f) Correlation of male patients' gene expression 
with FGA, hMSH2 and hMSH6 (ρ = -0.05 & 0.025215, respectively). Similarly, the females and males MSH2 & 6 protein expression correlation 
with FGA for (g) overall, (h) females and (i) males. 
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Survival Analysis - Overall Survival Status (OSS)
 We performed Kaplan-Meier tests to determine the role of 
both mRNA and their respective protein expression of these 
two MMR players on patient survival. The Kaplan-Meier 
curve is a graphical representation that generally estimates 
the survival function from censored data, truncated, or 
missing values. It indicates the probability of a subject 
surviving upto a time. The analysis indicated no significant 
impact of mRNA expression of both these genes on overall 
survival. Similarly, MSH6 protein expression does not have 
an impact on survival (Figure 5). However, it is of interest 
that higher MSH2 protein expression does show an improved 
survival (median=15.64 months) when compared to low 
MSH2 expression (median=13.27 months) although statistical 
significance (p=0.056) was not achieved. This finding offers 

exciting potential to explore further in a future study with a 
larger sample size.

DISCUSSION
 Mutations are prevalent in biological systems, with about 
100,000 errors occurring during a single DNA replication 
(20). The MMR pathway is responsible for correcting some of 
these replication errors and, thereby, is critical for the effective 
functioning of the cellular processes by maintaining genome 
stability (6). A deficiency in MMR significantly hampers the 
ability of DNA to correct the mutations. Also, if left unrepaired, 
these mutations can drastically affect cellular homeostasis, 
even leading to cell death or tumor in many cases (21). 
MMR’s functioning in glioblastoma is little known, though it is 
a downstream pathway to MGMT, the only significant known 
biomarker of GBM. MMR coordinates with MGMT to repair 
some DNA damage, which necessitates exploring the co-
functional pathways to identify new biomarkers. It is essential 
to explore the correlation of MMR on genome alterations 
and check its efficacy as a potential prognostic marker using 
publicly available datasets. An analysis like this one may 
determine possible indications that require further in-vitro or 
ex vivo studies to help better understand glioblastoma (4). 
 We used the KPS, a scale that measures the everyday 
functional capabilities of cancer patients before surgery, to 
determine the severity of the effect of GBM on patients. An 
interesting observation is that though the KPS is very good 
in about seventy percent of the patients, with less than four 
percent having a low KPS, the disease-free months and 
overall survival of the patients are low, with 83.29% deceased 
by the end of 4 years. This potentially indicates the complexity 
and fatality of glioblastomas and emphasizes the need to 
explore this observation of how good KPS has no effect on 
disease-free and overall survival further.
 We determined that there was little to no correlation 
between hMSH2 and hMSH6 gene expression with FGA. 
Although hMSH6 mRNA and MSH6 protein have weaker 
positive correlations with FGA, the data indicate that, unlike 
hypothesized, hMSH2 and hMSH6 only affect the FGA to 
a lesser degree. Also, as highlighted from the results, this 

Figure 4. PCA plot on the five most prominent variables. Plot to 
analyze the most distinctive pattern (or clusters) (if any) among patient 
samples based on age, sex, hMSH2 & hMSH6 gene expression, and 
FGA values. The two displayed PC1 & PC2 axes covers 98.932 and 
0.77107% variance respectively. Circle represents 95% confidence 
interval. 

Figure 3. Expression distribution plot. There is no apparent correlation between (a) hMSH2 or (b) hMSH6 expression and FGA axes. 
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regulation might be sex-dependent—hMSH6 has a significant 
correlation only in the case of male samples. Although this 
can be a case of misguided significant result due to the 
limited sample size in this cohort, it warrants the need for 
longitudinal studies. As anticipated, a total positive correlation 
could have demonstrated that the higher the expression of 
MMR genes, the lower the FGA, but this may be expected if 
the genes were functional and the relationship between their 
expression and FGA is empirical and well understood. Our 
study’s result may suggest that both hMSH2 and hMSH6 may 
not dominantly be involved in the causation of glioblastoma. 
However, only a functional study could really indicate the 
underlying mechanisms. However, further studies are 
required to get more insights into this. This exploratory study 
just demonstrates the complexity and need to explore this 
pathway in the search for identifying biomarkers of value.
 Overall, we found no significant difference in lower versus 
higher hMSH2 or hMSH6 expression on the OSS. This 
implies that the expression of these genes cannot accurately 
predict prognosis or survival. However, one cannot rule out 
the possibility of it being a potential biomarker. This in silico 
study could be useful to potentially explore the data and lead 
to new directions. 
 Limitations exist in this study that, if addressed, could lead 
to a more significant result. We relied on publicly available 
data from TCGA and cBioPortal with a limited patient sample 
size. Some of this data was incomplete and had to be cut 
down to be used for analysis; for example, only 120 samples 
were available for protein expression. Also, since this was an 
in silico analysis, we based our interpretation completely on 

correlation results. Hence, experimental studies analyzing 
the biological mechanisms to validate/disprove the causal 
relationship between the MMR pathway with cases of 
glioblastoma need to be performed. Another critical area of 
investigation can be large-scale studies to analyze the extent 
of expression difference between glioblastoma patients 
and healthy controls. Nonetheless, more comprehensive 
studies with more sample sizes could better enhance our 
understanding of the molecular biology of glioblastoma. 
 Thus, overall, we conclude that in our study, there is no 
statistically significant difference between hMSH2 and hMSH6 
gene expression and FGA in glioblastoma patient samples. 
However, higher protein expression of MSH2 demonstrated 
a better OSS. Therefore, this study places emphasis on the 
need to better analyze other genes using publicly available 
datasets to determine their role in GBM. In specific, studies 
that analyze all the genes of MMR pathway need to be 
conducted with more dependent variables to better elucidate 
the actual role of MMR. Once such studies are performed, we 
might identify new relevant biomarkers for glioblastoma.

MATERIALS AND METHODS
Data Acquisition
 A preliminary literature survey was performed using the 
NCBI-Pubmed to conduct this in silico study. The dataset was 
acquired from The Cancer Genome Atlas (TCGA) program, 
licensed publicly through the Genomic Data Commons (GDC) 
Portal (22). The experimental dataset TCGA-Glioblastoma 
Multiforme (Firehose Legacy, 2012) with 607 samples was 
chosen. The data file used from TCGA was mRNA expression 

Figure 5. Kaplan-Meier plot demonstrates the non-significant impact of hMSH2 and hMSH6 with OSS. Plots depict the likelihood 
of surviving over a period of 60 months for gene expression and protein expression. Patients were split into two groups for each plot: low 
expression (below the median, group A) and high expression (above the median, group 2=B). a) Non-significant impact of high or low hMSH2 
expression on Overall Survival Status of patients (p-value: 0.801). b) Non-significant impact of high or low hMSH6 expression on Overall 
Survival Status of patients (p-value: 0.707). c) Near significant impact of high or low MSH2 expression on Overall Survival Status of patients 
(p-value: 0.0561). d) Non-significant impact of high or low MSH6 expression on Overall Survival Status of patients (p-value: 0.357).
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microarray ‘data_expression_all_sample_Zscores’. The 
clinical data for the patients were obtained from cBioportal, 
licensed by the National Institutes of Health (NIH) (20,23). The 
data file used from cBioportal was ‘gbm_tcga_clinical_data’.

Data Processing
 To prepare the dataset for analysis, the data was sorted 
by selecting data relevant to the hypothesis. The complete 
data initially consisted of 607 individuals. However, not all 
the original 607 patients had exclusive data needed for the 
hypothesis. After sorting for variables such as age, sex, FGA, 
OSS, and KPS, the total number of patients obtained was 
366. Then the experimental data from TCGA (hMSH2 and 
hMSH6 gene expression) was matched with the clinical data 
for each patient. Protein expression data for both genes were 
only available for 120 patients. Finally, a separate protein data 
set was created for the analysis.

Data Analysis
 The statistical analysis was performed using RStudio and 
PAST software (24). Values such as age, FGA, hMSH2, and 
hMSH6 expression were categorized into two categories 
based on their median to determine if the higher or lower 
expression influenced survival.  Further, the Spearman 
correlation test was used to calculate the correlation between 
the FGA and hMSH2/hMSH6 expression. We determined 
significance by using a significance level of p<0.05. Kaplan-
Meier plots were plotted to analyze whether the expression 
of these two genes impacts OSS (25). These steps were 
repeated for the respective proteins MSH2 and MSH6. 
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