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INTRODUCTION
The term atomic energy refers to the energy carried by 

an atom, including its nucleus and electrons. The energy of 
an atom is vital in nuclear energy studies, emission series 
predictions, and determining reaction pathways for molecules 
(1). In the case of reaction pathways, the energies of the 
electrons can be used to determine the vibrational frequencies 
of the bonds and determine if desired compounds are stable 
or not. If they are not stable, alternatives to the compounds, 
known as analogs, can be modeled such that they have 

similar chemical properties to the original compound, but are 
also stable. Such calculations are crucial for pharmaceutical 
production and material synthesis. 

However, calculations require considerable time, as unlike 
calculating potential energies for particles on a macroscopic 
scale, electrons and subatomic particles tend to act as both 
waves and particles at the quantum level. This phenomenon 
is known as wave-particle duality (2). Rather than treating 
the electrons as exact particles or pure waves, they are 
considered “clouds” that display properties of both. Due to 
this nature, it was determined that measurements for such 
bodies possessed inherent uncertainties. For example, the 
more precise a calculation of the position of an electron is, the 
less precise its momentum calculations are (3). Thus, these 
clouds are modeled as probability distributions, represented 
by what is known as a wavefunction. The wavefunctions of 
electrons within atoms are calculated using the Schrödinger 
equation, which consequently allows for calculations of other 
properties such as atomic energy (4).

The Schrödinger equation is highly accurate when 
calculating single-electron atoms and ions’ electron 
wavefunctions and atomic energies (5). However, when 
progressing to multielectron atoms, due to the electrostatic 
repulsion between the negatively charged electrons, the 
wavefunctions of the electrons are dependent on each other, 
preventing the calculation of accurate atomic energies using 
the Schrödinger equation (6).

Numerous computational techniques exist to approximate 
the equation. The two most common are Quantum Monte Carlo 
techniques, which use repeated random sampling to calculate 
atomic energies, and self-consistent field (SCF) techniques, 
which start with an initial guess for the atomic energy and 
then apply a recursive algorithm to get a converged result up 
to a certain number of decimal places (7). Of these two, SCF 
methods provide a simplified approach to calculating atomic 
energies in their treatment of wavefunctions (8).

We utilized Hartree-Fock, the first SCF method devised. 
This was due to its lower runtime compared to other SCF 
methods, such as post-Hartree-Fock (PHF). The Hartree-
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Fock method has applications in calculating not only 
multielectronic atomic energies and quantum states, but 
also molecular orbitals, stability, and vibrational modes. It is 
used in biochemistry, pharmaceuticals, organic and inorganic 
chemistry, and material science, among other fields (9).

The foundation of the SCF method is the initial guess 
for the electron wavefunctions. These initial models are 
known as basis sets and are divided into Slater-type orbitals 
(STO) and Gaussian-type orbitals (GTO). STOs function as 
modeled approximations of the polar form functions of an 
electron orbital, and the time required for STO-based SCF 
calculations is greater than GTO-based ones. GTOs are 
easier to calculate but less accurate than STO basis sets (10).

While individual GTO functions are not accurate enough 
for SCF calculations, they can be summed together through 
linear combinations to approximate STOs in what is known as 
a contracted-GTO (CGTO) basis set (11). The size of a CGTO 
basis set is the number of GTO orbitals summed together 
for one electron orbital. The smallest CGTO basis sets, also 
known as minimal basis sets, are the Pople STO-nG basis 
sets, where n represents the size of the set (12).

Smaller basis sets, especially the STO-3G to STO-6G 
basis sets, are commonly used for basic atomic and molecular 
energy calculations due to their short calculation times. 
Although the accuracy of the calculations increases as the 
size (or the number of functions approximating each electron 
orbital) of the basis set increases, the program runtime rises 
(13). Moreover, the smaller STO-nG basis sets are used as 
foundations for other specialized basis sets (14). Thus, the 
smaller STO-nG basis sets are still commonly used.

The applicability of atomic and molecular energy 
calculations calls for more efficient methods of calculating 
SCF energies, especially for non-computational chemistry 
researchers. Thus, we sought to investigate effective and 
intuitive methods for atomic energy calculations. First, we 
decided to use a Python-based computational chemistry 
library for calculations (PySCF) and observe its potential in 
calculating atomic and molecular energies from scratch for 
future investigations. 

Second, for atomic energies alone, we aimed to model 
a relationship between atomic number and STO-nG atomic 

energy. We sought to determine how to calculate the atomic 
energies for the common STO-nG basis sets without SCF 
methods. Moreover, STO-nG basis set calculations have 
yet to be standardized beyond Xe, as there are numerous 
different STO-nG basis set variations caused by adding extra 
functions to model the increased number of orbitals beyond 
Xe. Thus, our models also aimed to identify the feasibility of 
predicting the STO-nG energies of elements beyond Xe. It 
must be noted that these models should be interpreted at 
whole-number values of atomic number only, and do not have 
any significance at fractional values. 

Our experiment aimed to calculate atomic energies for 
elements from He to Xe using STO-nG basis sets (from n=2 
to n=6). We hypothesized that the increase in the atomic 
energies would be non-linear, as the energy of interelectronic 
Coulombic repulsion, especially between valence and inner 
shielding electrons, would increase faster than the energy of 
the individual electrons and protons themselves, leading to 
a non-linear atomic energy increase. We found that the data 
supported our hypothesis, and that sinusoidal regressions 
seemed to fit the data best out of the tested regressions. 

RESULTS
We aimed to calculate the STO-nG energies using PySCF, 

then use them to plot atomic energy versus atomic number 
and see if any regressions could be feasibly modeled. 
Exponential, quadratic, and sinusoidal regressions were 
selected for testing, as the three models were fundamental 
and commonly used functions in modeling. 

Regression equations were first formulated using atomic 
energy data from He to Kr (Table 1). The feasibility of the 
regression models was evaluated by calculating the coefficient 
of determination (R2) for the data sets, with a maximum 
degree of precision of four significant figures as offered by 
the software. The R2 values of the quadratic and sinusoidal 
regressions remained at a constant value of 0.9996 for all 
five basis sets, while the coefficient varied for the exponential 
regression, with a mean of 0.9983 and a standard deviation 
of 0.0002 (Table 2). STO-2G was found to have the lowest 
exponential regression coefficient value of 0.9981, while 
STO-5G and STO-6G had the highest value of 0.9985. 

Table 1. Regression equations.

NOTE: Coefficients of formulated calculated exponential, quadratic, and sinusoidal regressions using atomic energy (in Hartrees (Ha)) vs. 
atomic number from elements He-Kr, using Desmos.
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After the approximative capacity of the regressions was 
tested through regression formulation using the first 35 
elements from He, the predictive power of the regression 
models was evaluated. Keeping the formulated regressions 
fixed, the data set was changed to include all the atomic energy 
values up to element fifty-four, Xe. With eighteen new data 
points, the R2 values of the regressions were recalculated. 
The new R2 values decreased from the original values, except 
for STO-4G exponential and STO-4G sinusoidal models, 
where they remained the same. The exponential regressions 
had the lowest mean new R2 value of 0.8997, with a standard 
deviation of 0.0899. The sinusoidal regressions had the 
highest mean value of 0.9959, with a standard deviation of 
0.0039. The quadratic regressions had a mean new value of 
0.9826, with a standard deviation of 0.0270 (Table 3). 

To understand if there was a relationship between basis set 
size and an increase in the magnitude of the residuals of the 
regressions modeling the basis sets, the average difference 
in the coefficients of determination was also calculated for 
each basis set. The differences between the old and the 
new R2 values were calculated to quantitatively observe the 
change in the degree of regression correlation with the atomic 
energy vs. atomic number data set for each basis set. The 
mean difference for exponential regressions was the largest 
in magnitude, at -0.0986, with a standard deviation of 0.0896. 
The mean difference for sinusoidal regressions was the 
lowest in magnitude, at -0.0037, with a standard deviation of 
0.0039. The mean difference for quadratic regressions was 
-0.0170, with a standard deviation of 0.0270 (Table 4). The 
average difference for all three regressions of a basis set had 
the lowest magnitude for the STO-2G basis set regressions 
at -0.0013, and the second lowest for the STO-4G basis set. 
In contrast, the other three basis sets had similar differences, 

with STO-5G possessing the highest average difference of 
-0.0595 (Figure 1). On further inspection of the regression 
functions, it was also observed that the method of least 
squares parameters for the STO-2G and STO-4G basis sets 
for the exponential and quadratic models were similar, while 
the parameters for the other three basis sets were similar, 
with these two sets of regressions having notable differences 
in their parameters. 

DISCUSSION
As the graph suggests, the data of STO-nG atomic energy 

vs. atomic number does not form a linear correlation, thereby 
supporting our hypothesis. The coefficients of determination 
of the three models suggest how feasible they are as models 
for the data set – the higher the coefficient, the greater the 
correlation between the data points and the regression 
model. The mean was calculated for each regression to 
get an average value of how well they correlated with the 
atomic energy data sets. We observed that the quadratic 
and the sinusoidal regressions had a higher coefficient of 
determination, while the exponential regression had lower 
coefficients of determination. This suggests that the quadratic 
and sinusoidal regressions correlate better with the data set 
than the exponential regressions. 

The quadratic and sinusoidal regressions were observed 
to have equal coefficients of determination. It must be noted 
that the sinusoidal regressions specifically have function 
parameters orders of magnitude below the range of the data 
presented. This may suggest that in the context of the data, 
the data set range may be small enough for the sinusoid 
function to model it at lower parameters. Further testing must 
be done for sinusoidal functions to confirm this. 

There are multiple ways in which prediction models can 

Table 2. Regression original coefficients of determination.

NOTE: Calculation of coefficients of determination for the five basis sets, with regressions calculated with atomic energy (Ha) vs. atomic 
number data from elements He-Kr, using Desmos.

Table 3. Regression new coefficients of determination.

NOTE: Calculation of coefficients of determination for the 5 basis sets for the calculated regressions, after the addition of new atomic energy 
(Ha) vs. atomic number data from elements Kr-Xe, using Desmos. 
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be tested. One of the most commonly used is establishing a 
training set, and then testing using a test set. In this case, our 
training set was selected as He to Kr, and our test set as He 
to Xe. To compare how well the correlation of the prediction 
model fit with the testing set, the difference in the coefficient 
of determination was calculated between the testing and 
training sets. These differences represent the addition of new 
data that affected the correlation of the data set.

If additional data is added and the coefficient decreases, 
then it implies that the new elements in the training set have 
introduced greater unexplained error and are not modeled as 
well, suggesting that further predictions beyond the test set 
would have even more residual error. For all three models, 
we found that the addition of new data generally led to a 
decrease in the coefficient of determination, implying that 
further prediction would not be possible due to increasing 
error. The average magnitude of difference in values for the 
exponential regressions after and before the new data for 
all basis sets was the highest among the three regressions. 
The data suggests that sinusoidal regressions had the least 
average magnitude of difference in   values, followed by 
quadratic regressions. 

Of the three regressions, sinusoidal regressions had the 
least change in correlation after new data was added and 
remained the most consistent in data correlation after the new 
data is included. This implies that of the three regressions, 
sinusoidal regressions were the most viable for predicting the 
atomic energies of elements beyond Xe, as they generated 
the least residual error when new data was tested. For all 
the basis sets, the quadratic and sinusoidal regressions saw 
a gradual increase in the magnitude of negative residuals 
concerning to the atomic energy vs. atomic number data set, 
in contrast, the exponential regressions saw a sharp increase 
in the magnitude of positive residuals (graphs with residuals 
in Appendix 3). 

However, the testing of the model raises several questions 
and areas for further research. Firstly, the sinusoidal model 
already demonstrated a great difference in the order of 
magnitude of the regression parameters and the range of 
the atomic energy dataset. Thus, further modeling for the 
sinusoidal regression is required to see if it truly provides 
meaningful results. Moreover, there were two functions 
where the coefficient of determination did not change with the 
addition of the test set. These are the STO-4G exponential 

and sinusoidal sets. For the sinusoidal sets, the lack of a 
change in the coefficient of determination may be attributed to 
its small parameters allowing it to be a good fit, nonetheless. 
However, two questions are raised: why does the coefficient 
remain constant for the exponential regression when the 
rest of the basis sets see great differences in the coefficients 
for the exponential model, and why do both anomalies are 
occurring with the STO-4G set? We hypothesized that this 
correlation was either an error present in the method of least 
squares used to determine the regressions by Desmos or that 
there could be a relationship between the basis set and the 
general correlation of the three tested regressions with that 
set’s atomic energy data. 

We found that the average coefficient difference for the 
STO-2G and STO-4G sets was much lower in magnitude 
than the average coefficient difference for the other three 
basis sets, with the difference in magnitude being greatest for 
the STO-5G data set. This was supported by a similar method 
of least squares parameters for STO-2G and STO-4G sets’ 
regressions that were not found in the other sets’ regressions. 
The observation of this data suggests that the parameters 
generated by the method of least squares technique on 
Desmos have reached different convergent minimums 
for the different basis sets. Further testing is required on 
other regressions to support the functions formulated using 
Desmos. 

The data supported our hypothesis that the plots of STO-
nG Hartree-Fock atomic energy vs. atomic number would 

Table 4. Regression coefficient differences.

NOTE: Calculation of difference between final and initial coefficients of determination for the calculated atomic energy (Ha) vs. atomic number 
regressions for the 5 basis sets (i.e., coefficients before and after new data was added) using Desmos. 

Figure 1. STO-nG basis set average coefficient difference vs. 
basis set size. A bar graph displaying the variation of the average 
regression coefficient of determination difference for each basis set, 
with respect to the size of the basis set. Error bars show mean ± sd.
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be non-linear. When testing the regressions, we found that 
the sinusoidal regression and the quadratic regression had 
a greater initial correlation with the data than the exponential 
regression. After introducing the test set, we discovered 
that exponential regressions had positive residuals, while 
quadratic and sinusoidal regressions had negative residuals. 
The exponential functions had greater decreases in the 
coefficient of determination when new data was introduced 
compared to the quadratic and sinusoidal functions, 
suggesting that they were susceptible to more residual error 
if used to predict atomic energies beyond Xe. 

However, these suggestions also came under scrutiny 
due to further analysis showing that the models for the STO-
2G and STO-4G database had different parameters when 
compared to the other basis sets and were also generally 
better correlated compared to the other three basis sets. 
Moreover, the parameters of the sinusoidal set were much 
lower in order of magnitude than the magnitude of the atomic 
energies themselves, implying that the sinusoidal models 
may not be as effective or meaningful in their predictions. 

Basic future research developing on this experiment 
would involve conducting more trials in generating the 
same regressions using Desmos, and comparing them to 
regressions generated by other software, to identify whether 
the anomalies identified were software issues or actual trends. 
More functions can be tested for regression modeling, such 
as Gaussian bell-curves, to observe if there are functions 
with higher coefficients of determination for the data sets. 
Moreover, future work could also compare PySCF data to 
previously calculated STO-nG energies, which our research 
group plans to do in our upcoming research. 

MATERIALS AND METHODS
Schrödinger equation and Hartree-Fock method

The Schrödinger equation is a partial differential 
equation that solves for the energy of an electron in an 
atom. The Schrödinger equation, where the calculation of 
the Hamiltonian (which represents the total energy of the 
atom) is independent of time, can be written as an eigenvalue 
equation (Equation 1). 

                                                                 (1)

Ĥ represents the Hamiltonian of the atom, ψ represents 
the wavefunction of the electron, and E represents the energy 
of the electron. 

The Hartree-Fock method acts as an approximating 
computational extension to the Schrödinger equation for 
multielectron atoms. Firstly, the many-electron wavefunction 
is approximated to be a product of the orbital wavefunction of 
each electron in the atom (Equation 2) (16). 

                                                  (2)

The multielectron wavefunction ψ for n electrons is the 

product of the atomic orbital wavefunctions φ of the electrons.
However, this allows for the existence of two electrons of 

the same energy level and angular momentum in an atom, 
which is not possible as per the Pauli exclusion principle (17). 
Thus, the spin states of the electrons must also be considered, 
which is done by calculating the Slater determinant of the 
many-electron wavefunction approximation. This allows for 
the calculation of the electron energies and the multielectron 
wavefunction in terms of the spin orbitals of the electrons (18). 

The spin orbitals are then calculated through the 
variational method, where the wavefunction of electron i is 
first calculated independently, then the wavefunction for j is 
calculated using the field of i as the average field, and the 
process is repeated, switching between the wavefunctions 
of i and j until the ground state electron energy has been 
minimized. This process can be conducted for any number 
of electrons. 

After the spin orbitals have been determined, they can be 
substituted into the Hartree-Fock equation to solve for the 
energy of one electron spin-orbital (Equation 3). 

                                                                      (3)

This is an analog to the Schrödinger equation for a 
single electron spin-orbital. ψi represents the wavefunction 
of electron i, εi represents the energy of the electron, and fi 

represents the Fock operator for the electron, which is the 
analog to the Hamiltonian for the atom but includes the energy 
of interelectronic Coulombic repulsion.

This can then be converted into a matrix equation 
calculable for the atomic energy, through the Roothaan-
Hall equation, an analog of the Schrödinger equation for the 
Hartree-Fock method (Equation 4) (19). 

                                                                     (4)

F represents the Fock matrix, the sum of H (the core 
Hamiltonian matrix) and G (the interelectronic Coulombic 
repulsion matrix). S represents the overlap matrix, calculating 
the overlap in electron orbitals. C represents the orbital 
coefficients, which is a linear combination of the calculated 
spin orbitals of the electrons. ε represents the diagonal energy 
matrix, which stores the values of the individual ground state 
energies of the electrons.

Thus, the atomic energy can be calculated using the 
Roothaan-Hall equation. This calculation can be repeated 
recursively, using the results of a calculation as the basis for 
another Hartree-Fock calculation, until the atomic energy 
converges for a certain number of decimal digits. Thus, 
Hartree-Fock, and other similar recursive methods are called 
the Self-Consistent Field (SCF) methods.

PySCF algorithm structure
PySCF is a peer-reviewed Python library with C 

optimizations facilitating Hartree-Fock and other SCF 



5 October 2023  |  VOL 6  |  6Journal of Emerging Investigators  •  www.emerginginvestigators.org

calculations using GTO basis sets. The PySCF library 
functioned as the foundation of our research algorithms (20). 
While PySCF is preinstalled with basis sets for common 
elements, it does not provide bases for larger elements. 
Thus, STO-nG basis set data was obtained from the BSE 
library, which called on data from the Basis Set Exchange 
GTO database (21). Using this, atomic energy states were 
calculated using PySCF for He to Xe using the BSE STO-
nG basis sets, and then displayed as LaTeX tables using the 
Matplotlib library (22). 

As opposed to getting the data from online sources, 
PySCF was used explicitly for future projects that the research 
group aims to work on. To investigate ways in increasing the 
accuracy and decreasing program runtime for atomic, and in 
the future, molecular calculations, PySCF’s calculations were 
tested and compared with previous studies, and its runtimes 
were also gauged separately to identify if it would be a viable 
program library for calculations run from scratch. In this light, 
future testing will also observe PySCF’s calculations for 
smaller and larger organic molecules, wherein data for many 
compounds cannot be found in online databases yet. 

A general program for a set of elements and an STO-nG 
basis set is structured as follows. After importing the libraries, 
the STO-nG basis sets for the elements are imported from 

the BSE. Then, the Hartree-Fock function is defined, taking 
in inputs of the element symbol, basis set, and number of 
unpaired electrons, and calculating the Hartree-Fock energy 
of the atom via PySCF. This energy is saved in a list, along 
with the element symbols. This list is then printed as a LaTeX 
table by Matplotlib, with columns of ‘Element Symbol’ and 
‘STO-nG Atomic Energy.’ 

This algorithm was modified for each STO-nG basis set 
(2G to 6G) and used to calculate and display the energies 
of the elements. To allow for simultaneous execution of the 
programs, they were divided into the elemental groups of He-
Ne, Na-Ar, K-Ca & Rb-Sr, Sc-Zn, Ga-Kr, Y-Cd, and In-Xe (see 
Appendix 1). Consequently, 42 LaTeX tables were created 
for each elemental group and basis set (see Appendix 3). 
These were then converted into Microsoft Excel tables using 
OCR software, and then used to plot regressions of atomic 
energy vs. atomic number. 	

Regression formulation and evaluation                                                                       
After the conversion of the LaTeX files into Microsoft 

Excel tables, the data was reorganized into one table with the 
columns of atomic number (Z), and STO-nG atomic energy 
in Hartrees (Eatom/Ha), with one column for each n from 2 to 6 
(see Appendix 2). Data from He-Kr (elements 2-36) was first 

Figure 2. STO-nG Hartree-Fock atomic energy (Hartrees) vs. atomic number for elements, He-Xe. Desmos scatter plot data of STO-
nG Hartree-Fock energy vs. atomic number. The image on the left shows all 58 data points. The right side of the figure is a magnification at 
atomic number 54, corresponding to the energies for Xe, to show the distribution of the 5 basis sets’ calculated energies. To view each graph 
in more detail, see Appendix 3.
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processed into scatter plots for each STO-nG basis set, and 
the correlation of the plots was qualitatively categorized. 

The complete list of STO-nG atomic energies vs. atomic 
number that we calculated and tabulated can be found in 
Appendix 2. Graphing the data yielded non-linear scatter 
plots (Figure 2). Basis sets were first imported from the 
Basis Set Exchange for Hartree-Fock energy calculations. 
This data was tabulated as LaTeX table images by Matplotlib, 
and then converted into editable Excel tables using online 
optical character recognition (OCR) software. From here, 
data for each basis set (n=2 to 6) from He to Kr was used as 
a training set to model exponential, quadratic, and sinusoidal 
regressions. All the data from He to Xe was then used in 
testing the prediction capabilities of the model. This process 
has been represented as a flowchart (Figure 3). 

 Only three regression models were tested due to time 
constraints. The quadratic model was also selected due to 
its foundation in the Rydberg equation, which postulated a 
direct relation between electron energy and the square of the 
atomic number (15). While the Rydberg equation is accurate 
only for monoelectronic ions and atoms and includes other 
factors such as the shielding of the protons from the valence 
electrons by the inner electrons, testing was nonetheless 
done to observe the accuracy of the quadratic model for 
multielectronic atoms as well. 

Testing was conducted using Desmos. To test our 
hypothesis, the approximative power of the regressions was 
first tested by constructing the selected regressions for data 
from He to Kr (elements 2-36) and calculating the R2 values, 
and then the predictive power of the regressions was tested 
by adding in data from Rb to Xe (elements 37-54). From here, 
the new R2 values were compared with the older values, and 
the difference between them was calculated and tabulated for 
an analysis of the model’s predictive capabilities, and to see 
if any regression fit consistently for all 5 STO-nG basis sets.

Coefficient of determination calculation      
For the data set of atomic energies used to build the 

regression (represented as values y1, y2, …, yn with mean y̅ ), 
and the predicted set of energies by the modeled function 
for those atomic numbers (represented as f1, f2, …, fn), the 
residual error for a specific data point is calculated as the 
difference between actual and predicted values (Equation 5).

                                                               (5)

For an x-axis value (in this case, atomic number) i, there 
is a corresponding atomic energy in the data set of yi, a 
predicted atomic energy by the model of fi, and a residual of 
ei. This error is positive if the actual data point exceeds the 
predicted value, and vice versa for negative error. 

Using the residuals, the coefficient of determination can 
be calculated for a regression model (Equation 6).

                                                                

(6)

The coefficient of determination R2 can be calculated 
as one minus the fraction of variance unexplained, which 
represents the error unaccounted for by the model. This 
fraction is calculated as the sum of the residuals squared over 
the total sum of squares, which is the sum of the squares of 
the differences between the dataset energy values and the 
dataset mean (23). 

The coefficient of determination measures how well a 
regression model fits a dataset. As the magnitudes of the 
residuals decrease, the value of the coefficient increases. 
Thus, the maximum coefficient of determination value is 1, and 
the minimum is 0. Consequently, Desmos uses the method of 
least squares to form the regressions, which calculates the 
coefficients for a function to minimize the sum of squares of 
the residuals (24). This is done through an initial approximation 
of the coefficients, which then undergoes a recursive process 
to optimize the coefficients until they converge at a minimum 
value for the square of the residuals.

General procedural improvements
To increase the efficiency of the experimental procedure, 

modifications to the investigation are to be instituted for future 
research and experiment repetition. A major inconsistency 
was the transfer of data between various applications – first, 
the data was organized through LaTeX tables as .png images 
created by Matplotlib. Then, the data was converted into 
Microsoft Excel .xls tables to allow for editing via OCR, and 
finally, it was transferred to Desmos for graphing. This three-
step approach was adopted due to the strengths of each 
application: Matplotlib presented the easiest tabular data 
arrangement approach in Python compared to other tabulation 
libraries, while Excel allowed for easy data manipulation and 
division as required on spreadsheets, and Desmos provided 
intuitive graphical representation and regression validation 
methods. 

However, each transfer step also introduced an area of 
potential random error in the final regression model built. 
First, when converting from .png to .xls, the OCR software 

Figure 3. Method flowchart. Simple flowchart depicting the steps in 
the procedure. BSE – Basis Set Exchange, OCR – Optical Character 
Recognition.  
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rendered certain numbers as letters, such as the digit ‘5’ in 
the image being converted to ‘S’ in the .xls file. Moreover, 
certain images yielded a conversion between the digits ‘1’ 
and ‘7’ from the image to the file. On Desmos, the regression 
functions generated only had constants of six significant 
precision figures, while the determination of coefficients 
were only calculated to four significant figures. Procedural 
controls were established to ensure that the error generated 
at each step was prevented or minimized, such as checking 
the OCR results with the original image numerous times, by 
all researchers, to correct any typographical errors and to 
confirm that the data was accurately converted between file 
formats. 

While Matplotlib and Microsoft Excel also had graphing 
abilities, Desmos was selected over the two due to the ability 
to rescale and size the scatter plot graph generated easily 
and to add new data to the table to check the change in the 
R2 value. However, in future experimentation, changes will 
be made to decrease the time spent on data transfer (such 
as in the OCR conversion and rechecking), and to increase 
the precision of measurements. To eliminate the need for 
the OCR, the data will be outputted by PySCF as a .txt file 
for easy transfer to a spreadsheet in the immediate future. 
Further investigation needs to be conducted on potential 
table-generating Python libraries that allow for copying and 
pasting of data from the output to a spreadsheet.

Our future research will shift to specialized scientific data 
processing and regression-building software, such as Vernier 
Software and Technology’s Logger Pro 3. While the procedure 
for regression validation on Logger Pro 3 involves more steps 
than on Desmos, it provides a degree of precision of nine 
decimal places for all regression calculations. Logger Pro also 
has numerous presets for fundamental regression function 
building, such as for exponential and sinusoidal regression 
formulation for dependent variable vs. independent variable 
scatter plots. Thus, the number of data transfer steps, and the 
level of random error in the results will be decreased.
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APPENDIX 1

APPENDIX 2

Link to GitHub repository with the Python code for the algorithms generated using PySCF-BSE-Matplotlib for Hartree-Fock energy calculation 
and LaTeX tabular organization: https://github.com/ZarseemDyartes/PySCF-Atomic-Energy-Calculations.
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APPENDIX 3
Link to GitHub repository with all 35 generated STO-nG basis set atomic energy vs. atomic number graphs from He-Xe, and the generated 
Desmos scatterplots, regression formulation, and regression validation. This data was added in the appendix due to exceeding the figure limit 
if all graphs and .png Matplotlib tables were included in the paper. https://github.com/ZarseemDyartes/Matplotlib-LaTeX-Tables-and-Desmos-
Scatter-Plots.


