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turtles from plastic straws stuck up their nostrils or soda 
can plastics tightly wrapped around their neck, thousands of 
other creatures continue to suffer from trash in the oceans 
(4). Moreover, when micro-plastics degrade due to sun 
exposure and wave action, the chemicals released in the 
process of degradation contaminate the ocean (5,6). These 
contaminates, such as lead, cadmium, and mercury, enter 
the human food chain as well. Humans consume these toxins 
when eating contaminated fish and mammals. Bottle caps 
and other plastics have been found in the stomachs of birds 
and fish who have died and washed ashore (7). Many plastic 
toxins have been directly linked to cancer, birth defects, 
immune system problems, childhood developmental issues, 
and disrupted hormonal function (8). 

Thus, while many in the world are aware of the dangers to 
human and animal welfare posed by degrading plastics and 
resulting toxicity, simply eliminating the use of plastic is not 
enough. As a society, we must embrace the task of cleaning 
up as much plastic as possible in the oceans to prevent 
continuing contamination of our food chain and water supply. 

Due to the harmful effects of plastics in the ocean, there 
has been an effort to clean up the ocean by gathering up 
the garbage using nets and large sea barges. Although this 
method allows us to clean the 15% of surface trash on the 
ocean, the vast majority remains below the surface and not 
visible (1). Thus, a technique for detecting and recognizing 
objects underwater is needed to discover the location of 
ocean garbage so it can be removed from the water. 

There are multiple ways to be able to detect the garbage. 
The main three ways are to use cameras, sonar, or Light 
Detection and Ranging (LIDAR). Cameras have the capability 
of providing high-resolution images for object recognition, 
but they are ineffective underwater because little visible 
light penetrates the ocean surface, especially at the deeper 
depths where much garbage can be found. While red light 
disappears in water at a range of 4.57 m, orange after 9.14 m, 
yellow after 18.29 m, and green after 24.39 m, most cameras 
are not effective at recognizing objects at ranges beyond 
15 m underwater (9,10). Alternatively, sound navigation and 
ranging (sonar) can be utilized deep in the ocean. Sonar 
operates by transmitting an acoustic signal and acquiring the 
backscatter from objects in the water. Based on the round-trip 
travel time of the signal, sonar can determine the distance 
of an object. Typical sonar systems, such as those used by 
a submarine, can achieve a maximum detection distance of 
about 5.8 km and 8.4 km, depending on whether it is summer 
or winter, respectively (11). However, sonar cannot easily 
differentiate between sea life and objects, such as fishes and 
garbage. It can only detect whether an object is present and 
which direction it is moving because the shape of an object 
in a sonar image is affected by the direction from which the 
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SUMMARY
It is estimated that there are 5.25 trillion pieces of 
plastic waste in the oceans. Of this plastic, roughly 
70% is not visible because it is underwater. This 
plastic is harmful to animals as they can get entangled 
in the litter and ingestion of plastic toxins can cause 
disease. Although cameras and hyperspectral 
imagers have been used to find plastics in the ocean, 
their efficacy is limited to visible garbage on the 
ocean surface. Ocean cleaning up requires retrieval 
of not just visible garbage, but underwater garbage 
as well. For this task, both sonar and Light Detection 
and Ranging (LIDAR) can be utilized; however, sonar 
can be harmful to marine animals by disrupting their 
echolocation capabilities. LIDAR generates high 
resolution point clouds with which recognition of small 
objects may be difficult. Therefore, we investigated 
the ability of lasers to image and identify underwater 
objects. Laser imaging can penetrate underwater, 
providing informative images at depths where there 
is no ambient light. This study examined the influence 
of various factors on underwater laser image quality: 
polarization, depth, turbidity, and object material. 
We conducted experiments by illuminating objects 
in water with a laser and recording illuminated 
objects using a camera. We utilized various image 
processing techniques to enhance image quality. Our 
results show that deconvolution was a more effective 
method than alternatives for reducing blurriness and 
that laser imaging is a viable method for detecting 
underwater garbage.

INTRODUCTION
It is estimated that there are 5.25 trillion pieces of plastic 

waste in our oceans (1). Although the Great Pacific Garbage 
Patch may be the most well-known repository of trash in the 
ocean, it is just one of five garbage patches worldwide. While 
8.3 million tons of plastic are discarded in the sea yearly, only 
15% of this amount floats. Another 15% washes ashore on 
our beaches, and the remaining 70% sinks to the bottom of 
the ocean's ecosystem, resulting in 4 billion microfibers per 
km2 below the surface (2). 

Plastic waste in oceans is harmful to sea life. One hundred 
million marine animals die each year from plastic waste, and 
fish ingest 12–14 thousand tons of plastic waste yearly (3). 
Not all deaths are caused by ingestion; many animals die 
from getting entangled in the litter. Worse, some animals 
end up living extended durations of time intwined in the 
plastic. Although some have tried to free animals like sea 
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object is observed relative to the direction of motion (12). 
Moreover, sonar can negatively affect the health of marine 
animals, especially whales and dolphins, by disrupting their 
understanding of location and direction (13). Sonar can also 
interfere with dolphins mating, separate calves from mothers, 
inflict physical injuries like ear damage and temporary 
damage to echolocation abilities, and in rare cases, cause 
death (14). As another example, to avoid the disruptive effects 
of sonar, whales may either beach themselves or rapidly dive 
deep, which can cause bleeding from the ears and eyes and 
pain (15,16).

In contrast, LIDAR, a device that uses pulsed lasers to 
measure the distance to an object or surface by measuring 
the time for the reflected light to return to its receiver, has 
the advantage that it can penetrate the water while using 
low frequency beams to detect objects with potentially 
less disruption to marine life (17). There has been an 
increasing amount of research involving the use of lasers 
underwater, such as for applications of underwater mapping, 
communications, and Internet of Underwater Things (IoUT) 
(18-20). Lasers have also been used by scuba divers to 
illuminate the underwater environment and communicate 
with other divers (21). These applications use Class III or IV 
lasers, which raises concerns over how the laser light might 
impact marine life (22). One recent study determined that if 
the human eye is not harmed, then the eyes of cetaceans, 
such as dolphins and whales, or pinnipeds, such as seals, 
would also not be harmed (23). The authors recommended 
avoiding laser illumination of groupings of marine animals 
and disengaging the laser if encountered (23). In the case 
of underwater laser imaging, the power of the laser impacts 
the distance an object can be effectively imaged (24). The 
requirements on laser power can be minimized by designing 
more sensitive optical detectors or by improving the image 
processing algorithms so that objects can be detected at 
greater distance with lower power. Using a lower power 
laser in a scanning mode would minimize potential impact 
on marine life by reducing the likelihood of the laser beam 
directly contacting the eye of a marine animal at a power level 
that would be dangerous. 

LIDAR technology has been used for underwater 
sea surveys, contributing to environmental science and 
conservation, as well as mapping the depth of the ocean floor 
and surveying sea habitats (25,26). In 2019, Kraken Robotics 
developed a compact, underwater laser imaging system that 
could generate dense 3D point cloud images - a collection of 
points that reveal the surface of an object - of plant and animal 
life in the ocean (27). It was designed for deployment on an 
underwater robotics platform. Because of the time required 
by underwater vehicles to survey and scan large volumes 
of ocean, there has recently been research into mounting 
LIDAR sensing systems on unmanned aerial vehicles (UAVs). 
Although airborne LIDAR system are degraded by the strong 
reflections of sunlight from the water’s surface, last year, one 
proof-of-concept study conducted over shallow coastal areas 
integrated a LIDAR onto a UAV and showed that it could be 
possible to detect objects beneath the water’s surface in real-
time (23).

LIDAR point clouds reveal the general shape of an object, 
but to identify whether an object is garbage and to avoid 
confusion with fish, kelp, or other sea life, it would be better to 
have an actual image of the object. Lasers, the core technology 

of LIDAR, can also be used for underwater imaging (28). 
Because lasers actively transmit their own source of light, 
the power of the laser can be adjusted to achieve greater 
penetration and to image objects at greater depth. Also, if 
the laser were mounted on an underwater robot, the active 
illumination of LIDAR can enable acquisition of much deeper 
objects. In this case, the power of the laser would determine 
the maximum distance between the object and underwater 
vehicle at which images could be obtained. However, different 
factors may affect the quality of underwater images (29).

The objective of this research was to investigate the 
impact of various factors on underwater laser imaging. For 
this, we determined how the resolution of laser imaging 
will change with depth and turbidity, how the polarization 
of a laser effects image resolution quality and how image 
processing can be used to enhance underwater laser images. 
We hypothesized that both depth and turbidity of the water 
would result in the images becoming fainter and blurrier, 
making it harder to identify objects. We also hypothesized 
that different polarizations may bring out different features of 
the images, which may improve our ability to recognize the 
objects. Because there has been much work on the removal 
of atmospheric haze and blurriness in aerial photos, we were 
curious about their efficacy on underwater laser images (30). 
Thus, we implemented three common noise-reduction and 
deblurring algorithms - guided filtering, de-hazing, and blind 
deconvolution - and compared their efficacy. Based on our 
visual observations and analysis of the images, we found that 
underwater laser imaging is a viable method for detecting 
garbage underwater and conclude by discussing implications 
for future work.

RESULTS
The efficacy of underwater laser imaging was evaluated 

by conducting experiments in a laboratory using a green laser 
and objects submerged in a 4 ft long glass aquarium. To be 
able to better design our experiment, we first used the LIDAR 
range equation to predict how much the backscatter in the 
water column reduces the intensity picked up by the camera. 
Next, we acquired laser images for objects of different size 
and material composition at different depths in water with 
different turbidity levels using the laser adjusted for linear 
and circular polarization. Inspecting the images, we visually 
observed the impact of depth, turbidity, and polarization on 
the images. We then implemented several different deblurring 
methods to try to improve the clarity of objects in the laser 
images we acquired. We based our results on visual as well 
as quantitative analysis of the images with respect to our 
research variables.

Theoretical Analysis
The LIDAR range equation provides a theoretical model for 

the expected received power, which determines the intensity 
of pixel values, to the detector from the transmitted beam of 
the laser (31). In general, an overall model of the expected 
received optical power given interaction with an object in the 
water tank can be expressed as:

[Eqn. 1]

where Pt is the transmitted power in watts, Dr is the 
receiver aperture diameter in m, η is a transmission factor, 
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H is the distance traveled in the air in m, W is a combined 
factor representing loss factors, Rb is the benthic reflectance, 
K is the diffusive attenuation coefficient of water, and D is 
the benthic depth. Object reflectivity typically depends on the 
amount of light absorbed by the object’s material at the laser’s 
wavelength, the incidence angle (α) at which the laser beam 
interacts with the object, the solid angle of the backscatter 
and the area of the object. This equation also assumes that 
the entire laser beam interacts with the object (in other words, 
the object is wider than the beam extent for the distance at 
which the target is located) and that the object backscatter is 
the same in every direction.

Since our experiment was conducted in a glass tank, unlike 
real-world ocean sensing, we were also required to take into 
consideration the potential impact of the glass on the laser 
beam. As the beam passes through the glass wall of the water 
tank, the laser beam refracted at the air-glass and glass-water 
interfaces. According to Snell’s law, the angle of refraction as 
the beam passes through an interface is n1sin(θt)=n2sin(θ2), 
where n1 and n2 are the refractive indices of the respective 
media, and θ1 and θ2 are the angles of incidence. If the 
angle of incidence of the LIDAR beam is perpendicular 
to the interface, as is the case in our experimental set-up, 
there were no change in the angle of incidence of the LIDAR 
beam as it passed through the glass interface. Therefore, no 
refractive effects were needed to be added into Equation 1 for 
this experiment. 

Based on Equation 1, because the length of the water tank 
is 1.2 m, when an object is placed at the furthest end of the 
tank, the beam will have a round-trip travel distance of about 
2.4 m, resulting in an overall degradation factor of 0.01. In 
other words, the water column decreases the strength of the 
optical power by a factor of 100 when the object is furthest. 
When an object is placed in the center of the tank, so that 
the distance is halved, the degradation factor is about 0.15. 
Based on this analysis using the LIDAR range equation, it 
is expected that distance will greatly reduce the received 
power and therefore contrast in the image, eventually making 
objects undetectable as distance increases. 

Qualitative Observations
Objects made from different materials can have different 

levels of reflectivity. To test the effect of material on the laser 
image of an object, we compared the images of objects that 
are metal, clear or painted/opaque plastic, fabric, Styrofoam 
and rubber at the same depth, linear polarization and zero 
turbidity (clear, fresh water). The plastic bottles appeared 

to be highly reflective, and many images had glare in them 
(Figure 1). The writing on the milk bottle is easily readable, 
while color changes, such as that on the small plastic shoes, 
are easily visible. The metal chain appeared subdued relative 
to the shoelace, which, in contrast, was quite bright.

As the depth of objects increased, the blurriness of the 
image also increased, causing finer features to become 
obscured (Figure 2). At a depth of 76.2–91.44 cm, only the 
outline of an object was barely visible. This was consistent 
with our estimates made based on Equation 1 where we 

Figure 2: Almond milk bottle under linearly polarized laser in 
clear water. As the depth of the object from the camera increases, 
blurriness also increases.

Figure 1: Effect of material on laser images in clear water under linear polarization. The transparent Gatorade bottle reflects much more 
compared to other material, such as the plastic shoes. The writing on the Almond Milk Bottle is more clearly visible because of the contrast 
of colors. Even though metal is a better reflector than shoelaces in air, the shoelace is much more reflective than the metal chain underwater.
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found that at 1.22 m the water column resulted in a power 
attenuation factor of 0.01. 

To investigate the impact of polarization on image 
quality, we compared the images for objects at a depth 
of 45.72 cm when illuminated with laser light of linear and 
circular polarization. Polarization determines the geometric 
orientation of light waves. For example, linearly polarized light 
waves oscillate back and forth along a line, while circularly 
polarized light waves rotate with respect to the direction of 
travel. The backscatter from different materials changes 
depending on polarization. For some objects such as the 
milk bottle and the Gatorade bottle, linear polarization yields 
images with greater contrast (Figure 3). This is evident 
because with linear polarization, the writing on the milk 
bottle was clear, while the outline of the Gatorade bottle was 
also distinct. In contrast, these edges were not clear in the 
circularly polarized images. The image of the egg carton also 
exhibited greater contrast under linear polarization, while 
there was less variation of pixel intensities in the circularly 
polarized. However, for objects such as the metal chain and 
shoelace, circular polarization provided a clearer image 
relative to linear polarization. This is evident by the rings of 
the metal chain being more visible under circularly polarized 
laser illumination. From observations comparing the egg 
carton and metal chain under linear and circular polarization, 
we inferred that the material of the object is an important 
factor in laser imaging efficacy, as is the polarization of the 
laser (Figure 3).

To test the effect of turbidity, we added calcium bentonite, a 
white powder used in making facial creams that has no known 

adverse effects on human health, to the water. The powder 
resulted in a turbidity so high that it was only at a depth of 
15.24 cm that any part of the milk bottle and small plastic 
shoes could be visible (Figure 4). We found it interesting that 
the writing on the milk bottle could be so visible while the egg 
carton appeared completely blurry. This could be in part due 
to the greater extent to which the material and shape of the 
egg carton disperses light.

Quantitative Evaluation
We assessed the impact of variables, such as depth, 

polarization, and turbidity, by comparing the similarity 
between images when only one variable changes at a time. 
We utilized two metrics commonly used in image evaluation 
for this purpose: mean square error (MSE) and structural 
similarity index (SSI) (32). The MSE computes the average 
squared difference in digital number value between two 
pixels. In contrast, the SSI considers the relational properties 
between pixels locally. Consequently, the MSE can be highly 
affected by differences in orientation of the same object, 
while the SSI is a bit more robust to this factor. If two images 
are similar, the MSE value will be low, but the SSI value will 
be high (33). 

We used the MSE and SSI to quantify the impact of 
linear versus circular polarization at different depths for all 
objects. We observed that the MSE exhibits much greater 
variance than the SSI. This reflects the sensitivity of MSE to 
the orientation of the object, because the MSE computation 
involves direct subtraction of pixel-to-pixel intensities 
squared. The SSI plots were much more consistent and less 
affected by orientation (Figure 5). The SSI plots revealed 
the general trend that as the depth increases (irrespective of 
polarization) the SSI decreases. Lower SSI implies that there 
is less similarity. This is what we expected, as the increasing 
blurriness and lower signal-to-noise ratio (SNR) seen with 
increasing depth renders it less like the image at 15.24 cm. 

To reduce the effects of blurring, which increases with 
depth and turbidity due to the increased backscatter of 
the water column, we implemented three different image 
deblurring methods: guided filtering, dehazing, and blind 
deconvolution (34-36). We compared the resulting image 
quality for the case of the almond milk carton illuminated 
with a linearly polarized laser located at a depth of 91.44 
cm. Although the original image had a granular texture, we 
found that after guided filtering, the background and texture 
of the object was smoother and the MSE and SSI values 
also indicated slightly improved image quality (Figure 6). 
However, this improvement was not practically significant, as 
it was still impossible to read the text on the milk bottle. We 
then experimented with dehazing, comparing the effect of the 
order in which the algorithms were applied on the data: first 
doing guided filtering and then dehazing or first doing dehazing 
and then guided filtering. Comparing the similarity metrics for 
these cases, we found that that first applying guided filtering 
followed by dehazing is slightly more effective than vice versa 
(Figure 6). Neither guided filtering nor dehazing produced 
significantly tangible benefits towards enhancing the image 
sufficiently so the text on the milk bottle could be read.

We found that deconvolution yielded the most promising 
results. When we applied deconvolution to an image of 
the almond milk bottle for a depth of 45.72 cm and linear 
polarization, we saw a definite improvement in the crispness 

Figure 3: Examples comparing circular and linear polarized 
images. The metal chain looks clearer under circular polarization, 
while the egg carton has greater clarity and contrast under linear 
polarization.
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Figure 4: Effect of high turbidity on visibility of objects at a depth of 15.24 cm. Because of the high levels of turbidity in the water tank, 
many objects are not visible even at close ranges. The only object visible is the Almond Milk Bottle, because of the high contrast in color of 
its label.

Figure 5: Variation of MSE and SSI under linear and circular polarization. A) MSE under linear polarization, B) SSI under linear 
polarization, C) MSE under circular polarization, and D) SSI under circular polarization with depth. MSE values fluctuate greatly with depth 
because MSE is computed pixel by pixel. As the perspective of the object in the image changes pixel by pixel changes are created. Thus, 
MSE as a metric has disadvantages. SSI on the other hand, is based on capturing object shape; therefore, we can observe a downward trend 
of similarity with distance, as expected, due to the increased blurriness in the image.
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of lines and readability of the text can be observed. However, 
we found that the efficacy of deconvolution changed 
according to the depth of the object. When we applied the 
same deconvolution function to an image of the milk bottle at 
91.44 cm, however, no visible improvement was seen – the 
image was still blurry.

In summary, we acquired 277 underwater laser images in 
a lab setting using a 4 ft aquarium for different object depths 
and materials, water turbidity levels, and laser polarizations, 
and used this dat as the basis for our visual comparisons and 
quantitative analysis. We applied three different deblurring 
algorithms on these images and compared MSE and SSI 
values to better understand how image quality depends upon 
the experiment variables and on the type of image deblurring 
algorithm utilized to enhance the images.

DISCUSSION
Overall, our results showed that using lasers to recognize 

objects underwater is possible, but that there are limitations 
on the conditions under which it can be effective. Different 
materials exhibit differences in backscatter, which can 
improve or degrade visibility. Polarization can reveal different 
features of the same image. For some materials, circular 
polarization resulted in clearer images, while for others linear 
polarization resulted in sharper images. Object depth is a 
significant factor impacting the quality of images. The deeper 
the object, the blurrier the image. We believe that this is due 
to the dispersion and backscatter of light by the water column 
itself, a problem that is even further compounded when the 
water is turbid. None of the image processing methods we 
tested were able to give clear images when the water is turbid. 
While turbidity may not be as big of a problem in the open 
ocean, along the coastline, sand and sea week will challenge 

laser image-based object recognition – we cannot see what 
light blocks.

We found that neither guided filtering nor dehazing were 
effective for deblurring laser images. Guided filtering smooths 
the image, and although the method tries to preserve edges, 
it does not really aim to improve sharpness. Dehazing, on 
the other hand, estimates radiometric transmission based on 
the properties of atmospheric propagation, not underwater 
propagation, which has different physics-based relationships. 
We believe that for this algorithm to be more effective on laser 
images, the transmission models would need to be revised for 
the underwater case. We found blind deconvolution can be a 
promising method for deblurring, even though we found that 
our implementation of deconvolution only worked at a certain 
depth. We believe that this is because the deconvolution 
method relies on having a mathematical model or estimate of 
the impact of the water. Because the amount of backscatter 
of the water column changes with depth, the blurring model 
will also change. However, our implementation utilized a 
Gaussian model for the water. When this model is not a good 
match, the method will be ineffective. That an improvement 
was seen for any depth, however, means that with further 
research on modeling, this approach can be improved to give 
better results over a wider range of conditions.

In retrospect, there were several ways in which these 
experiments could have been more effectively conducted. 
First, we could have introduced the calcium bentonite more 
incrementally so that we could better control the turbidity 
level. When too much of the powder was added into the water 
tank at the beginning, making the water extremely opaque, 
there was no way of undoing the process and subsequently 
reducing the turbidity. Only a small, measured amount of the 
powder should have been added so that varying levels of 
turbidity could be assessed.

Second, the difference in orientation of the objects caused 
by the way the objects were manually held underwater 
introduced numerical errors in the similarity metrics due to 
the change in orientation. A better experiment could have 
been constructed by devising a mechanism for holding 
the objects underwater, rather than just having a person 
submerge the objects. Use of a fixed holder would have 
allowed consistency in the measurements and yielded more 
meaningful comparisons based on the similarity metrics.

In conclusion, we found that increasing depth and water 
turbidity are significant causes of increased blurriness in 
both linearly and circularly polarized laser images. But the 
use of image processing methods, such as deconvolution, 
can be helpful in decreasing blurriness and improving the 
resulting image clarity. More work on developing advanced 
image enhancement techniques can expand the real-world 
conditions under which objects can be recognized underwater. 
For example, a recent review paper on underwater image 
enhancement describes many new deep learning-based 
techniques that have achieved success with regular camera 
photos (37). Thus, these results show the potential for 
underwater laser imaging to be used for detecting garbage in 
water bodies such as oceans. In future work, we plan to work 
more on advanced deep learning-based image enhancement 
and object classification algorithms as well as design a 
prototype underwater ROV for finding and cleaning up ocean 
garbage.

Figure 6: Effect of image dehazing and noise filtering. 
Regardless of the order with which dehazing and filtering are applied, 
the resulting images remained blurry.
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MATERIALS AND METHODS
All the experiments were conducted in a lab at the 

University of Alabama. Appropriate eye safety precautions 
were utilized to prevent any harm to human health. The test 
set-up consists of a 1.2 m x 0.3 m glass aquarium mounted 
on a table. In this way, imaging up to a depth of 1.2 m can be 
tested. A green laser with a wavelength of 532 nm was utilized 
with a beam expander to illuminate an object through the side 
of the water tank (Figure 7). A filter was placed in front of 
the camera to only allow the frequency of the green laser to 
be detected by a camera. Although high-quality cameras are 
available for use as a detector, in this work, a personal cell 
phone was utilized as a cost-effective solution. To be able 
to capture as much of the object as possible, it was very 
important for the camera to be flush against the optical filter. 
Tinkercad was used to design and print a holder for the cell 
phone that could be inserted into an optical base upon which 
a cylindrical holder was screwed. The cell phone was then 
remotely controlled from a computer to enable visualization 
and acquisition of the laser image of objects.

In natural bodies of water, the water is oftentimes not clear 
but turbid due to the mixture of mud, sand, and biological 
materials in the water. In this work, the turbidity of the water in 
the tank was adjusted by mixing in calcium bentonite, a white 

powdery substance. We added 2 Tbsp of calcium bentonite 
into the water tank to get a concentration of approximately 
0.23 g/L. A homogeneous distribution was ensured by using 
an aquarium pump in the tank to circulate the water. 

The turbidity level in the water tank was measured by 
constructing a turbidity sensor utilizing a DfRobot turbidity 
sensor, Arduino Nano, 16x2 12C LCD display, breadboard, 
wires, solder, and soldering iron (Figure 8). The turbidity 
sensor was wired to the Arduino Nano, using solder to form 
connections at places for which there was no connector. 
We modified code for operating the sensor posted at 
how2electronics.com to enable proper thresholding and 
calibration for different liquids. We found that with the original 
version of the code, the turbidity readings did not change 
for different liquids (e.g., water versus black tea). This was 
because a hard limit of 2.5 V had been utilized, which resulted 
in the constant saturation of values. With our modified code, 
the sensor values changed according to the transparency and 
turbidity of the liquid (Figure 8). The sensor was calibrated so 
that tap water showed a reading of 0 Nephelometric Turbidity 
Units (NTU).

Experiments were conducted by imaging daily objects that 
might one day end up as ocean trash. A metal chain, almond 
milk bottle, small plastic shoes, a plastic beverage bottle, 

Figure 7: Schematic of water tank test set up for underwater imaging experiments and laser with beam expander. A) Objects placed 
in the water tank are illuminated by a laser whose beam is dispersed in the water before a camera captures the backscattered light from the 
object. B) Beam expanders are used to widen the laser beam so that the entire object is illuminated.

Figure 8: Impact of turbidity on laser beam. A) Measurement of turbidity of clear water (NTU=72) which establishes the baseline NTU 
value of our sensor. B) Measurement of turbidity of cloudy water (NTU=251) showing the result of adding calcium bentonite to water. C) Turbid 
water illuminated by laser. When turbidity is high, the particulates in the water cause great dispersion of the laser beam reducing the depth 
that it can penetrate.
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an egg carton, and shoelaces were utilized. These objects 
were selected because of their variety in shapes, material, 
texture, color, shape, and inclusion of text (in the case of the 
bottles and carton). The richness of features would enable a 
better qualitative and quantitative evaluation of laser imaging 
efficacy. Four different experiments were conducted: 1) laser 
set to linear polarization, clear water in tank; 2) laser set to 
circular polarization, clear water in tank; 3) laser set to linear 
polarization, turbid water in tank; and 4) laser set to circular 
polarization, turbid water in tank. 

Additionally, during each experiment, the position of the 
object was moved towards the side of the tank most distant 
from the laser in 15.24 cm intervals. Moving the objects 
laterally within the tank at a position of 15.24 cm, 30.48 cm, 
45.72 cm, 60.96 cm, 76.2 cm, and 91.44 cm from the near 
side of the tank effectively emulates water depths of those 
distances (Figure 9).

We quantified the impact of depth and polarization on 
the quality of the laser images acquired, which were then 
evaluated using MSE and SSI image quality metrics. Each 
object, I0, was defined as the image taken at 15.24 cm and Ix 
as the images taken at 30.48, 45.72, 60.96, 76.2, or 91.44 cm 
depths. The MSE and SSI are then computed and plotted as 
a function of ∆d, the difference in depth for both linear and 
circular polarizations. The trend over depth is compared to 
evaluate which is more effective. We also compared MSE 
and SSI values to evaluate deblurring algorithms: 1) Guided 
filtering, a noise reduction technique that preserves the 
edge details of the image by using the content in a second, 
guidance image to influence the filtering; 2) Dehazing, an 
approach originally designed for removing the effect of 
atmospheric haze, based on approximating the dark channel 
prior method using the local patches in a haze-free outdoor 
image that have very low intensity values in at least one-color 
channel; 3) Blind deconvolution, a method that models the 
blurry image as the convolution of a clear image with a model 
of the cause of the blurriness – in our case, the backscatter 
from the water. Convolution is the process for computing the 
output of a linear, time-invariant system given an input x[n] and 
an impulse response function h[n] that models the corrupting 
system (Figure 10) (38). If the water column is modeled as 
a blurring system with impulse response hblur, then the blurry 
image is computed as Iblur=Iclean*hblur, where * is the convolution 
operator. The effect of the water column can be removed if we 
know the inverse system hblur

-1. Blind deconvolution refers to 
the case when the inverse is unknown (39). We assumed a 
generic Gaussian function to model the blurring system and 
manually adjusted the width of the function according to what 
visually gave the clearest looking image.
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