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implications (2). Because of this, building systems that can 
accurately detect objects through extenuating environmental 
circumstances is crucial. However, one major concern that 
arises with incorporating adjustments to environmental 
conditions is the time required to detect objects. Should a 
model require more time, on average, to efficiently create a 
detection, sufficient time may not be provided to the control 
system to react and prevent a collision. Adding more layers 
to a model to account for environmental conditions risks 
increasing time for detection, which could reverse the benefits 
of safety. 

With this problem in mind, this study investigated the 
validity of creating a novel model for object detection that can 
perform at high levels of accuracy even with environmental 
conditions that affect visibility in sensor data, all while critically 
maintaining a low detection time. We hypothesized that 
said model, which would employ multiple classical machine 
learning techniques to edit and recompose images, would 
outperform industry alternatives in accuracy and speed. The 
proposed algorithm consists of a Visibility Complementary 
Module (VCM) as well as an Object Detection Module (ODM). 
The VCM consists of an assessment of noise & dimensions 
within each frame, followed by the implementation of deep 
learning methods to isolate and remove these factors, or 
mitigate their presence within each image. The corrected 
image is then fed into the ODM, which primarily consists of 
identifying and creating bound boxes around said objects 
based on factors like height, width, and depth. This includes 
deep learning, as well as convolutional networks for image 
classification. The model was validated and tested with the 
Waymo Open Dataset for autonomous vehicle data published 
by Waymo, a child company of Google (3). To measure 
relative accuracy, we compared the performance of the 
model against the YOLO.V3 model (You Only Look Once), a 
common industry leader in the field of pedestrian detection 
(4). The algorithm achieved an accuracy average of 89.72% 
across the board, but notably outperformed YOLO.V3 in 
every category of environmental conditions. Furthermore, 
time to detect an object after an appearance was much lower 
on our model, taking roughly only 0.849 seconds on average, 
in comparison to YOLO.V3’s 1.301 seconds. Splitting the task 
into two modules and then integrating them into one model 
after retraining adequately accounted for environmental 
conditions in real-time, and improved efficiency compared 
to market alternatives. This paper and its findings have the 
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SUMMARY
Intelligent vehicles utilize a combination of video-
enabled object detection and radar data to traverse 
safely through surrounding environments. However, 
since the most momentary missteps in these systems 
can cause devastating collisions, the margin of 
error in the software for these systems is small. 
Furthermore, extenuating weather conditions such 
as rain, snow, and fog exponentially increase the 
likelihood of accidents by reducing visibility and 
increasing the time for detection. In this paper, we 
hypothesized that a novel object detection system 
that improves detection accuracy and speed of 
detection during adverse weather conditions would 
outperform industry alternatives in an average 
comparison. To do so, the model employs multiple 
classical deep learning techniques in two separate 
sub-modules: a Visibility Correction Module (VCM) 
and an Object Detection Module (ODM). Firstly, the 
model employs image classification techniques 
and masking to identify environmental factors 
frame-by-frame within an image, and then uses a 
novel dimensionality reduction network to remove 
said effects. Next, corrected images are analyzed 
to classify and label objects within frames. The 
proposed algorithm achieved an average accuracy 
of 89.72%, and outperformed industry alternatives in 
mean accuracy and time for detection, demonstrating 
the validity and efficiency of utilizing dimensionality 
reduction to improve object detection.

INTRODUCTION
While modern transportation is trending toward smart 

traffic, societal acceptance and full implementation of 
autonomous vehicles ultimately depends on the safety 
guaranteed during operation of these unmanned automobiles. 
A critical component of assuring safety in the implementation 
of these devices is guaranteeing the ability to accurately 
detect images of pedestrians and other road conditions to 
make instant decisions predicated on these variables (1).  
Crucially, as climate change worsens on a global scale, 
accuracy of such detections can be impacted or degraded by 
the increased prevalence of environmental conditions like rain, 
wind, snow, haze, and other natural calamities. These issues 
could lead to incorrect classifications of traffic environments 
and surroundings, driving a control system to make incorrect 
decisions that have disastrous pedestrian and driver safety 
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potential to improve autonomous vehicle safety in hazardous 
weather by utilizing high accuracy detection algorithms, 
possibly improving public perception surrounding these 
vehicles.

RESULTS
The experimental setup consisted of data set enrichment 

as well as model development. This required the Waymo Open 
Dataset to be cleaned and parsed to maintain a balance of 
data between each environmental factor as well as clear data. 
Finally, model development required software development to 
match the features present within the Waymo data, as well as 
validation and testing.

To compute the accuracy of the algorithm, we compared 
the model to the YOLO.v3 object detection software, which is 
readily used as a leading software for pedestrian and vehicle 
detection in autonomous vehicles (4). YOLO.v3 currently does 
not have an inherent feature that accounts for environmental 
factors, so it served as a control method. We conducted a 
comparison between the two algorithms on a variety of 
features present within the visual data, and both models were 
run side by side on similar data after training with the Waymo 
Open Dataset. After testing with 1,000 video segments, 
consisting of 20,000 total frames in a variety of environments 
and weather conditions, our model outperformed that of 
YOLO.v3 in two metrics: object detection accuracy as well 
as time for detection from the first appearance (Table 1). 
A measured value of 100% accuracy would correspond 
to a model being able to detect every critical object that is 
visible on the screen, while a near-zero value for detection 
time corresponds to a model that can detect objects almost 
instantaneously. Measurements of accuracy had limitations 
at times, especially when objects were in very close proximity 
to one another. However, because there is no purpose in 
distinguishing between two objects that are close to each 
other in real-world scenario, so long as the system can detect 
some type of object in that vicinity that needs to be avoided, 

this limitation to accuracy was largely discarded. Retraining 
of the model also meant that accuracy and time for detection 
improved over multiple epochs, or run-throughs of the testing 
data set. On average, runtime decreased through retraining, 
and accuracy increased in a logistical manner. Specifically, for 
each epoch the accuracy of the model increased substantially, 
yet the acceleration of this increase tended to decrease over 
time as well (Figure 1). 

While accuracies for our model differed by level 
across the board, the average accuracy for the model was 
approximately 89.72%, with a standard deviation (SD) of 
0.53% (Table 1). Notably, the model’s performance was best 
under images with entire image factors (EIF) including haze 
and glare. For the validation dataset, the mean accuracy 
for the model was approximately 88.63% (SD=0.42%) for 
haze-induced conditions and 90.82% (SD=0.47%) accurate 
in glare-induced conditions (Table 1). The category of data 
that had the lowest accuracy in the model was determined 
to be on-camera factors (OCF), such as rain or snow, which 
had a mean accuracy of approximately 85.22% (SD=0.66%), 
significantly lower than other categories such as haze and 
glare (Table 1). It is important to note that while rain and snow 
can often contribute to EIFs, the frames influenced by rain 
and snow and classified as OCFs were labelled as such for 
having visual blots on the frame itself rather than effects on 
the entire frame. This specification also made the difference 
between a rain or snow blot being indistinguishable in this 
case.

Mean time for detection for the model was approximately 
0.849 seconds with a standard deviation of 0.00521 seconds 
(Table 1). The variations in performance largely followed 
the same trend as mean accuracy, with EIF-induced data 
producing the lowest time for detection and OCF-induced 
data producing the highest. In a comparison to the industry 
standard, our model outperformed current market alternatives 
like the YOLO.V3 detection systems. On average, our model 

Figure 1: Training accuracy over epochs for proposed model 
under several weather conditions. Graph displaying accuracy 
over multiple epochs, or run-throughs, of data set with scale starting 
at one epoch and retraining up to eight epochs; different line for each 
type of weather condition. 

Table 1: Mean accuracy and speed of detection in object 
detection for proposed model versus YOLO.V3. Mean accuracy 
in object detection and mean speed of detection in seconds is 
displayed for multiple categories of different weather categories 
such as clear, rain & snow, glare, and haze induced conditions for 
both models. Accuracy and speed statistics for both models were 
produced by training said model on the Waymo Open Dataset.
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is 9.73% more accurate across the board compared to YOLO.
V3, and is up to 19% more accurate at its best. The model 
also takes, on average, 0.51 seconds less to identify an object 
than YOLO.V3.

DISCUSSION
The model proposed in this study maintains an accuracy 

of 89.72% while taking on average 0.849 seconds to detect 
objects, outpacing industry models. However, the model 
tends to underperform in OCF-induced data in both mean 
accuracy and mean speed of detection, hindering overall 
efficiency. Limitations and inefficiencies within the study can 
largely be attributed to the selection of data that the model 
was primarily tested upon. Most notably, the gap in accuracy 
and runtime for data with noticeable OCFs was likely because 
the recomposition network received less training with OCF 
images due to limited data   within the Waymo Open Dataset. 
Furthermore, by splitting the model into two modules, although 
integrated together, the runtime is nonetheless affected as 
data needs to be processed separately by both modules. 
Another inefficiency that may positively influence accuracy is 
the inherency of false detection. In a case scenario in which 
two objects are extremely close to one another, such as two 
pedestrians or a pedestrian riding a bicycle, the model could 
classify multiple objects as one, creating an inverse trade-off 
between detection rate and accuracy.

For future experimentation, we plan to incorporate two 
main improvements to improve model accuracy and lead to a 
faster run time. We plan to train the model with more diverse 
data including rain and dust spots to improve the accuracy 
of our model in conditions with OCFs. As our current dataset 
has limited data with OCF-induced frames, future training 
and testing could involve using alternate datasets, such 
as Berkeley Deep Drive 100K which has similar properties 
to Waymo Open (5). We also plan to improve the ODM by 
incorporating three-dimensional topographical data. This 
would involve the usage of light detection and ranging (LIDAR) 
Data, which is included within the Waymo Open Dataset. 
LIDAR imaging creates topographical maps of a vehicle’s 
surroundings, thus using corresponding LIDAR data to our 
data would be crucial in developing a more accurate model 
that can process multiple dimensions of data (6).

The results produced by the model demonstrate that 
environmental conditions can be properly accounted for 
even with a low runtime for detection systems. By making 
the detection of critical subjects like pedestrians and other 
vehicles more accurate even when there are strenuous 
weather conditions, the model created and tested in this study 
has the potential to revolutionize the safety of autonomous 
vehicles, as well as the accuracy of their object detection 
systems.

MATERIALS AND METHODS
To train and test the model, 50,000 video segments from 

the Waymo Open dataset were used (3). Each segment within 

this dataset consists of roughly 20 seconds of video recorded 
by an autonomous vehicle, as well as LIDAR data which was 
not used in creation of the model. The dataset was split into 
training & testing data, which was 70% training and 30% 
testing. With training data, the model was fed data based off 
predetermined weather categories such as snow, rain, and 
haze. Furthermore, each 20 second video segment was 
broken into roughly 500 frames for analysis using OpenCV, 
a platform for image and video processing (7). OpenCV was 
also used for grayscale application and masking of frames. 
Model development followed a cycle that consisted of both the 
VCM and ODM, with numerous steps for dataset enrichment 
and software development in the process (Figure 3).

Image frames were first fed into the VCM, which conducted 
a visibility assessment, followed by dimensionality reduction 
or feature selection to remove environmental factors. First, to 
assess the visibility within each frame the model computes the 
standard deviation of the pixels within the image, comparing 
the assigned value of each pixel’s contrast to the mean value 
of the frame on a numerical scale as specified by the OpenCV 
software. A threshold for standard deviation was determined 
for accurate classification of images as having an EIF such 
as haze or fog. To do this, multiple standard deviations were 
used, and relative performance was computed based on a 
comparison between the number of factors detected and the 
actual number of factors within the image. After delineation 
between several thresholds ranging from 60-110, the most 
optimal threshold was computed to be Sx = 95, so that any 
standard deviation above this threshold was classified as 
possessing an EIF. 

To remove any potential EIFs as well as OCFs such as 
rain drops or dust spots on camera lenses, a combination of 
dimensionality reduction and feature selection was utilized. 
For frames with noticeable OCFs, the following process was 
followed. First, the model applies a grayscale filter to the 
entire frame with the OCF. Then, utilizing a convolutional 
neural network, regions of interest (ROIs) that could be 
potential OCFs were identified and boxed within each frame. 
These ROIs were detected as havingsignificantly higher pixel 
values than the average pixel value of the image. Finally, 
the model mitigates the effects of the OCFs by utilizing a 
medium blur as well as a pre-trained image recomposition 
model to reconstruct video accurately without hampering 
visibility further. If a frame is classified to contain EIFs, the 

Figure 3: An algorithm flowchart of module functionality and 
structure. The two modules within the model are interconnected 
and pass frames from real-time video to one another after performing 
their functionality.



31 OCTOBER 2022  |  VOL 5  |  4Journal of Emerging Investigators  •  www.emerginginvestigators.org

model passes the frame through a corresponding dark or 
light channel for contrast adjustment, which reduces the 
effects of the EIF. This process is repeated until the standard 
deviation of pixels is approximately 85. Corrected frames are 
processed into the ODM where critical subjects are identified 
and classified, and the model then creates bounded boxes 
around said subjects. Subjects can be classified into one of 
eighty labels, which included “person,” “bicycle,” and more.

After image processing has been completed, the model 
passes frames through a Single Shot Multibox Detector 
(SSD). This model utilizes a single deep neural network to 
extract features identified within an image using an arbitrary 
backbone. Then, the image is passed through a matching 
phase to train associatinganchor boxes to bounding boxes of 
each ground truth object within an image. Bounding boxes 
are calculated at multiple resolutions, which are then reduced 
with extra feature layers. The output of six levels of resolution 
is concatenated, and non-critical bounded boxes are filtered 
out using non-maximum suppression. After generating 
bounded boxes with the SSD, a convolutional neural network 
is used to identify and process each image contained within 
each bounding box. The model then chooses from one of 
eighty distinct labels to classify the image for a vehicle’s 
control system to process. Boxes and their labels are then 
displayed in real-time in each frame, which enables a control 
system to make decisions based on these inputs (Figure 2).

To compare the relative performance of the algorithm to 
other models, two indicators of performance were measured 
for both our model and YOLO.V3: detection accuracy and 
speed. Detection accuracy was measured by comparing the 
number of objects detected during certain time intervals to 
the actual number of objects present within the frames, the 
values of which were procured in the Waymo Open Dataset. 
This was a modified version of the Mean Squared Error, a 
statistic estimator in which points are compared in proximity 
to values on a fitted line. Fitted values were produced by the 
Waymo Open Dataset, while the values computed by the 
model and YOLO.V3 were plotted in comparison. This process 
yielded a mean accuracy for each 20-second interval as well 
as a standard deviation. Similarly, the speed of detection was 
measured by comparing the time it took to detect an object 
after its appearance on screen versus how long the object 
was visible within the frame. 
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Figure 2: Comparison of frames for ODM. Frame from real-time 
video before (left) versus after passing through the ODM (right). 
Images corrected by ODM are passed into a Single Shot Multi-box 
detector to create and classify bounded boxes surrounding said 
images.


