
18 MARCH 2023 | VOL 3 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

retain the security features of blockchains (5).
	 Many researchers have explored the area of blockchain
databases. Peng et al. and El-Hindi et al. implemented
blockchain databases with network security in mind and
allowed the users to securely collaborate in a blockchain
database (6–7). Nathan et al. integrated relational databases,
which store data with pre-defined relationships in tables with
blockchains (8). BigchainDB is a commercial blockchain
database, which uses MongoDB as its data stores (9–10).
Adkins et al. derived three constructions of encrypted
blockchain databases to implement in blockchains such as
Ethereum and Algorand (11).
	 This work expands on the idea of encrypted blockchain
databases, where the user encrypts the sensitive data first,
then uses the secret key to query the data (11). The database
allows end-to-end encryption, where the data is encrypted
in both the server and in transit to the user’s device, then
decrypted on the user’s device (11). This is a significant
difference in current commercial NoSQL databases such as
Cassandra and MongoDB, where the data is unencrypted at-
rest (12).
	 Adkins et al. addressed this problem with encrypted
multi-maps, which are key-stores that support the Get and
Put operations on the data (11). While proving its use in other
public blockchains is a significant step towards practicability,
this work implements its own blockchain and construction to
test the feasibility of a database.
	 First, our work provides an in-depth security analysis on
the blockchain framework described. To test the feasibility
of the database, we tested the runtime and throughput. The
throughput is the number of operations per second. Usually,
the latency, throughput, and runtime are tested against
common databases (13). As the server and client are both run
locally, the latency is not tested. The independent variables of
this study are Append, Query, Update, and Delete algorithms
of the blockchain database. There are four hypotheses, each
focusing on one of the independent variables.
	 We hypothesized that if the Append method was called,
then the runtime would have a positive linear correlation and
throughput a negative linear correlation because the number
of blocks in the database increases the height logarithmically,
therefore the runtime would increase, and throughput
decrease.
	 Additionally, we proposed that if the Query method was
called, then the runtime would be logarithmic and throughput

Blockchain Databases: Encrypted for Efficient and
Secure NoSQL Key-Store

SUMMARY
	 Databases have revealed many vulnerabilities
in which hackers can penetrate and gain access to
the data. Blockchains have been proven useful to
protect against fraud and data miners, exemplified
in cryptocurrencies. In this paper, we propose a
blockchain database framework as a non-relational
database structure that integrates the properties
of blockchains and databases. The independent
variables when testing this database were the Append,
Delete, Query, and Update functions in the database
framework. We predicted that the Append, Query, and
Update functions would have a logarithmic runtime
and linear throughput; while the Delete function would
have a constant runtime and throughput. The database
was tested with about 150,000 operations with the
server and client locally running. We observed the
runtime was slightly positively correlated while the
Delete was not positively correlated with the number
of operations in the Append, Query, and Update
functions. The throughput of the Append, Query,
and Update functions were significantly negatively
correlated with the number of operations. The
blockchain database framework displayed end-to-
end encryption and feasibility with this experiment.
One possible application of the database framework
is in the financial industry, as there is a one-to-one
correspondence with user and transaction.

INTRODUCTION
	 A blockchain is a distributed, shared ledger to keep
unalterable records across computers. Blockchains have
recently gain attention from research and industry through
the rise of cryptocurrencies. Since the introduction of
cryptocurrencies, the qualities of immutability and persistency
attracted the implementation of blockchains in other
technologies (1–2). One of these technologies includes non-
Structured Query Language (NoSQL) databases, which store
data as documents, key-stores, and graphs (3). Comparing
to their relational database cousins, which store data based
on relationships between data, NoSQL databases are non-
relational and store data in different structures other than
tables. The main advantages of these types of databases are
the improvements in scalability and a data-structure-based
database (4). Combining databases and blockchains would

Ayushi Mehrotra1, David Kim1

1 Troy High School, Fullerton, California

Article

18 MARCH 2023 | VOL 3 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

linearly negative because since the database structure is a
hybrid AVL tree, the runtime is reduced to logarithmic trend,
so as runtime increases, the number of operations per second
decreases.
	 We theorized that if the Update method was called, then
the runtime would be logarithmic and throughput linearly
negative, which is due to the construction of the Update
method as it calls the Delete method, then Append method,
adding to a logarithmic runtime and decreased throughput.
	 Finally, we hypothesized that if the Delete method was
called, then the runtime would be constant and throughput
would remain unchanged, as Python is the language of
choice, deletion of an element in a dictionary is constant
runtime and constant throughput (15).
	 The purpose of this work is to combine and advance
the field of blockchain databases and explore the security
advantages. The blockchain database framework has proved
its feasibility and security. The throughput and runtime both
are aligned with the hypotheses, and this blockchain database
framework can be implemented in the financial world, where
one-to-one correspondence is needed.

RESULTS
	 We tested the throughput and runtime on the blockchain
database using a script that models Yahoo! Cloud Serving
Benchmark (YCSB). Latency, which is usually coupled with

throughput, was not tested for the blockchain database as the
server and client were run locally. YCSB is routinely used to
benchmark Structured Query Language (SQL) databases,
so we tailored a script to perform the same functions for the
blockchain database (17). We measured the performance of
the database framework to determine if it was feasible. The
script inputted test data with the size of 60 bytes into the
database framework. It also conducted 143,640 operations
of Append, Delete, Update, and Query functions each.
The large amount of data and operations ensured that the
database framework can be maintained. The script ran five
times to ensure the computer and environment did not affect
the results of the database.

Throughput
	 The throughput is the average of five trials for each
database function. The Append, Query, and Update functions
showed a negative linear trend; however, the trend was
not strong enough to be deemed as a strongly negative
correlation (p=0.0; Figure 1). Yet, it shows that the Append,
Query, and Update functions decrease slightly as the number
of operations increase, which is significant (Table 1). The
Delete function was excluded from the analysis as all 143,640
operations were completed in under a second. The Query
function throughput was noticeably higher than the Append
and Update function.

Figure 1. Throughput Performance Comparison of Database
Functions. Line graph showing throughput of the Update, Query,
and Append functions. To reduce sampling variability, the moving
average of the past 500 trials was recorded and each data point is
the average of 5 trials.

Figure 2. Runtime Performance Comparison of Database
Functions. Line graph showing runtimes of the Update, Query,
Append, and Delete functions. To reduce sampling variability, the
moving average of the past 500 trials was recorded and each data
point is the average of 5 trials.

Function Correlation Significance p-value
Append negative significant <0.0001
Query negative significant <0.0001
Update negative significant <0.0001

Table 1. Throughput Correlation with Number of Operations.
A Pearson correlation test was used to determine the number of
operations and throughput of Append, Query, and Update functions
(n=143640).

Function Correlation Significance p-value
Append positive significant <0.0001
Delete positive not significant >0.80
Query positive significant <0.0001

Update positive significant <0.0001

Table 2. Runtime Correlation with Number of Operations. A
Pearson correlation test was performed to establish the number
of operations and runtime of Append, Query, Update, and Delete
functions (n=143640).

18 MARCH 2023 | VOL 3 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

Runtime
	 The runtime, which is the difference between wall time from
the start of the function to the end, is defined by the average
of five trials of each database function. The Append function
runtime was noticeably higher than the Query, Update, and
Delete function, while the Query and Update functions had
similar runtimes (Figure 2). All four functions showed a
slightly positive trend, yet the correlation between runtime
and number of operations for Append, Query, and Update

functions were significant, the Delete function correlation was
not significant (p>0.80; Table 2).

DISCUSSION
	 The runtime of the functions remained relatively stable,
with a slight positive increase in the Append, Query, and
Update functions. These results support our hypotheses as
the Append, Query, and Update functions have linear trends.
The Delete function also showed a positive correlation, yet
not significant, which supports the hypothesis regarding the
Delete function, where the runtime and throughput would be
constant.
	 The throughput of the Append, Query, and Update
functions displayed a weak negative correlation, which
supports our hypotheses. As the Delete function throughput
was constant, it supports our hypothesis too. The throughput
was low, yet this could have been influenced by the computer
specifications of the Surface 3 Laptop. The server and client
were ran locally on a personal computer, whereas databases
are usually stored in large data centers. For the scope of
this paper, using a personal computer was sufficient to test
the blockchain database framework. The negative tendency
could have been corrected by adding more threads to the
database. Threads allow another instance of the database to
run, which could increase the throughput exponentially.
	 The throughput of the Append and Update function was
significantly less than the Query function, which could have
been due to the creation of a block in the database. All three
of the functions have the same time complexity, which is

Figure 4. Components of a block. Diagram showing each
component of a block in the blockchai n database. The primary key
is hashed with SHA256() and the JSON files are encrypted with
AES-CTR. The key for AES-CTR is transferred between server and
client by ECDH.

Figure 3. Structure of blockchain database with directory dictionary. Diagram of each block pointing to the previous block. To query,
the server is directed towards the directory dictionary to get the key to the block. The key acts as a directory when converted to binary, as
0 is towards the right node and 1 is towards the left node.

18 MARCH 2023 | VOL 3 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

outlined below, so the lower throughput was most likely due
to the new block that is appended to the database framework.
	 Qualitatively, the time complexity (the amount of time
taken by an algorithm to run as a function of the input) of the
four functions are listed below.

Equation 1.1. Append function Time Complexity: O(log2 n+k).

	 Where n is the number of blocks and k is the overhead
in creating a block. Let V be the length of characters of n2
– 1, where n2 is n in base 2, and the Equation (Eq.) 1.1 be
O(V+k). V can be approximated as log2 n+1 empirically, so
Eq. 1.1 would result to O(log2 n+1+k). After disregarding the
constants and converting to conventional standards, the time
complexity of the Append function will be O(log2 n+k).

Equation 1.2. Delete function Time Complexity: O(1)

Eq. 1.2 has constant time complexity since it removes the
directory of a block in the directory dictionary.

Equation 1.3. Query function Time Complexity: O(log2n)

	 Where n is the number of blocks and k is the overhead
in creating a block. Let V be the length of characters of n2
– 1, where n2 is n in base 2, and the Eq. 1.3 be O(V). V can
be approximated as log2 n+1 empirically, so Eq. 1.3 would
result as O(log2 n+1). After disregarding the constants and
converting to conventional standards, the time complexity of
the Query function will be O(log2 n).

Equation 1.4. Update function Time Complexity: O(log2 n+k)

	 Where n is the number of blocks and k is the overhead in
creating a block. Let V be the length of characters of n2 – 1,
where n2 is n in base 2, and the Eq. 1.4 be O(V+k). The extra
constant is due to the deletion of a block to replace it with an
updated one. V can be approximated as log2 n+1 empirically,
so Eq. 1.4 would result as O(log2 n+2+k). After disregarding

the constants and converting to conventional standards, the
time complexity of the Update function will be O(log2 n+k).
	 In the future, we would like to continue to scale this
blockchain database framework to a fully working database
with an Application Programming Interface (API). We would
also like to test out the database with more than one user to
implement the decentralized aspect of a blockchain.
	 Our paper presents a novel encrypted blockchain
database framework and implements its own blockchain to
test feasibility. The blockchain database framework was tested
for runtime and throughput with about 150,000 operations.
Overall, the runtime has no significant positive correlation
with the number of operations and the throughput has a slight
negative correlation with the number of operations. With the
security of an encrypted database and the results from this
paper that supports scalability, the architecture presented
in this paper is feasible in the real world. Both metrics show
promising future for a larger database, which includes load
balancing, an API, and consistent data partitioning.

MATERIALS AND METHODS
	 To start the procedure of this research, the specifications
of the computer was reviewed to ensure the following
requirements were meet: Windows 11 (Version 21H2),
PyCharm (Version 1.2), and Python Interpreter (Version
3.9). The framework was implemented on a Surface Laptop
3 with an Intel i7 CPU at 1.30 GHz and 16 GB RAM. The
blockchain database was built in the Integrated Development
Environment (IDE) and exported to GitHub. Using the Append,
Query, Delete, and Update functions presented in the code,
the throughput and runtime of the functions were measured.
To test the database, a script was created to model the Yahoo!
Cloud Serving Benchmark (YCSB) program and transferred
all the output metrics to a CSV file. To test the significance
of the data as the number of operations grow, a Pearson
correlation test was used.

Encryption Scheme
The encryption used in this database framework was the

Figure 5. Flowchart of an Append function. The JSON that the client inputs is encrypted with AES-CTR, which is transferred by ECDH to
decrypt while querying. The primary key is hashed with SHA256(SHA256()) and the EMM is stored in the block. The location of the block in
the blockchain database is obtained by the closet directory, which is essentially converting the number of blocks in the blockchain to a binary
directory. The server uses the binary directory to get to the closest directory and appends the block with the EMM and hashed primary key.

18 MARCH 2023 | VOL 3 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

Elliptic Curve Diffie-Hellman Key Exchange (ECDH) with
Advanced Encryption Standard in counter mode (AES-CTR).
Elliptic curve cryptography was chosen for the key exchange
between the server and the client because it is not as
space consuming as Rivest-Shamir-Adleman (RSA). Diffie-
Hellman Key Exchange is an algorithm that facilitates the
communication between the server and the client. ECDH uses
the points on the elliptic curve to designate the private and
public key of both client and server. To encrypt the JSON files,
AES-CTR was used to provide secure symmetric encryption
(11, 14). The AES key was transferred as the secret between
the server and client using ECDH.

Blockchain Database Structure
	 A blockchain database is a sequence of connected blocks,
which holds the data as an EMM (Figure 3). The block header
stores the previous block hash, allowing the block to only
have one parent block. The starting block of the blockchain
is named the genesis block, as it has no parent block.
Blockchains display immutable blocks, decentralization, and
data persistence (5).
	 The blockchain database was created in a tree format,
more specifically, an AVL tree. Instead of a linear blockchain,
which would display the runtime of O(n), an AVL tree was used
to ensure the height of the blockchain tree does not exceed
log n, where n is the number of blocks in the blockchain and
therefore runtime of O(log n). AVL trees are a type of self-
balancing tree, which means that they rearrange the nodes
on the tree to make it the constant height. However, this is
not possible in a blockchain, where each block is connected
to another block through its hash and address. Therefore, it
is not possible to rearrange the blocks on the tree to create
an even height. To mitigate this, when appending a block into
the chain, the block would be inserted at the closest directory.
This directory was based on the next spot in the tree available
to append. Each block was given a key, and according to the
binary version of the key, the block will go to that directory,
where 0 is left branch and 1 is the right branch. The closest
directory of the block went to a separate dictionary, where the
Query function references to find the block. This dictionary is
called the directory dictionary.

Block
	 The two parts of the block are the block header and the
block body (Figure 4). A block header comprises of:
Key: a number that references block number in the blockchain
database and, when converted into binary, its directory to
reach the block.
Parent block Hash: A hash of the previous block.
Timestamp: The block time is in Unix epoch time, the current
time in seconds since January 1, 1970.
	 The block body is formed with EMMs and primary key. The
EMMs store the data that is directed by the user, as detailed
above. The primary key is a string that references the EMM,
where the user enters a primary key to find the corresponding

data.

Algorithms
	 A blockchain database (BCD) consists of four algorithms.
The first algorithm in BCD is the append algorithm.

Equation 2.1. (BCD’) ← Append(k, d, p)

Where k is the user-inputted primary key to search the
database, d is the data corresponding to the primary key in
the form of a JSON file, and p is the private key of the user to
decrypt d. To append into the blockchain tree and retain the
height of log n, the block is assigned a key, which is the current
block number. The key is then converted into binary and used
to navigate the tree to insert at a certain location, where 0 is
the left branch and 1 is the right branch. A directory dictionary
is used to store k and the key that it is given. (Figure 5)
	 The JSON file is converted into a Python dictionary then
encrypted with the AES key, which was the secret message
transmitted between the server and client using ECDH.
 	 The next algorithm in the BCD is the query function.

Equation 2.2. d ← Query(k, p)
	 Where k is the primary key given to search for d and p is
the client’s private key. The query method uses the key that
corresponds to the primary key in the directory dictionary to
find the block needed. The data d comes in the form of an
EMM and gets decrypted on the client’s end.
	 Furthermore, the next algorithm in the BCD is the delete
function.

Equation 2.3. (BCD’) ← Delete(p)
Where p is the primary key that corresponds to the block.
Blockchains are immutable, which makes deletions not
possible. To create a fix to this problem, Eq. 3 uses the
primary to delete the directory from the directory dictionary,
and therefore cannot find the block when Eq. 2 is called.
The final algorithm is the update algorithm,

Equation 2.4. (BCD’) ← Update(k, d, p)

Where k is the user-inputted primary key to search the
database, d is the data to replace the current data, which
is corresponding to the primary key in the form of a JSON
file, and p is the private key of the user to decrypt d. Eq. 4
is a combination of Eq. 1 and Eq. 3, where the function first
deletes the existing entry with the primary key in the directory
dictionary and then uses the append function to create another
block with the same primary key and the newly inputted data.

ACKNOWLEDGMENTS
	 We would like to thank the Ardent Research Team for the
tools to conduct this research. We would also like to thank L.
Klein for advice and comments on the paper.
Received: April 08, 2022

18 MARCH 2023 | VOL 3 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

Accepted: June 16, 2022
Published: March 18, 2023

Appendix
 GitHub Repository: https://github.com/ayushimehrotra/
Blockchain_Database.git

REFERENCES
1. Wright, Craig S. “Bitcoin: A Peer-to-Peer Electronic Cash
System.” SSRN Electronic Journal, 2008, doi.org/10.2139/
ssrn.3440802.
2. Zheng, Zibin, et al. “An Overview of Blockchain Technology:
Architecture, Consensus, and Future Trends.” 2017 IEEE
International Congress on Big Data (BigData Congress),
2017, doi.org/10.1109/bigdatacongress.2017.85.
3. Jing Han, et al. “Survey on NoSQL Database.” 2011
6th International Conference on Pervasive Computing
and Applications, 2011, https://doi.org/10.1109/
icpca.2011.6106531.
4. Nisa, Behjat U. “A Comparison between Relational
Databases and NoSQL Databases.” International Journal of
Trend in Scientific Research and Development, Volume-2, no.
Issue-3, 2018, pp. 845–848., doi.org/10.31142/ijtsrd11214.
5. Dasgupta, Dipankar, et al. “A Survey of Blockchain from
Security Perspective.” Journal of Banking and Financial
Technology, vol. 3, no. 1, 2019, pp. 1–17., doi.org/10.1007/
s42786-018-00002-6.
6. Peng, Yanqing, et al. “FalconDB: Blockchain-Based
Collaborative Database.” Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data,
2020, https://doi.org/10.1145/3318464.3380594.
7. El-Hindi, Muhammad, et al. “BlockchainDB - towards a
Shared Database on Blockchains.” Proceedings of the 2019
International Conference on Management of Data, 2019, doi.
org/10.1145/3299869.3320237.
8. Nathan, Senthil, et al. “Blockchain Meets Database.”
Proceedings of the VLDB Endowment, vol. 12, no. 11, 2019,
pp. 1539–1552., doi.org/10.14778/3342263.3342632.
9. BigchainDB 2.0 the Blockchain Database. www.bigchaindb.
com/whitepaper/bigchaindb-whitepaper.pdf.
10. MongoDB, https://www.mongodb.com/.
11. Adkins, Daniel, et al. “Encrypted Blockchain
Databases.” Proceedings of the 2nd ACM Conference
on Advances in Financial Technologies, 2020, doi.
org/10.1145/3419614.3423266.
12. Okman, Lior, et al. “Security Issues in Nosql Databases.”
2011IEEE 10th International Conference on Trust, Security
and Privacy in Computing and Communications, 2011, doi.
org/10.1109/trustcom.2011.70.
13. Cooper, Brian F., et al. “Benchmarking Cloud Serving
Systems with YCSB.” Proceedings of the 1st ACM
Symposium on Cloud Computing - SoCC '10, 2010, doi.
org/10.1145/1807128.1807152.
14. Curtmola, Reza, et al. “Searchable Symmetric Encryption:
Improved Definitions and Efficient Constructions.” Journal of

Computer Security, vol. 19, no. 5, 2011, pp. 895–934., doi.
org/10.3233/jcs-2011-0426.
15. “Python 3.10.4 Documentation.” 3.10.4 Documentation,
docs.python.org/3.10/.
16. Gauravaram, Praveen. “Security Analysis of
Salt||Password Hashes.” 2012 International Conference on
Advanced Computer Science Applications and Technologies
(ACSAT), 2012, https://doi.org/10.1109/acsat.2012.49.
17. Yassien, Amal W., and Amr F. Desouky. “RDBMS,
NoSQL, Hadoop: A Performance-Based Empirical Analysis.”
Proceedings of the 2nd Africa and Middle East Conference
on Software Engineering - AMECSE '16, 2016, https://doi.
org/10.1145/2944165.2944174.

Copyright: © 2023 Mehrota & Kim. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

