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retain the security features of blockchains (5). 
	 Many researchers have explored the area of blockchain 
databases. Peng et al. and El-Hindi et al. implemented 
blockchain databases with network security in mind and 
allowed the users to securely collaborate in a blockchain 
database (6–7). Nathan et al. integrated relational databases, 
which store data with pre-defined relationships in tables with 
blockchains (8). BigchainDB is a commercial blockchain 
database, which uses MongoDB as its data stores (9–10). 
Adkins et al. derived three constructions of encrypted 
blockchain databases to implement in blockchains such as 
Ethereum and Algorand (11). 
	 This work expands on the idea of encrypted blockchain 
databases, where the user encrypts the sensitive data first, 
then uses the secret key to query the data (11). The database 
allows end-to-end encryption, where the data is encrypted 
in both the server and in transit to the user’s device, then 
decrypted on the user’s device (11). This is a significant 
difference in current commercial NoSQL databases such as 
Cassandra and MongoDB, where the data is unencrypted at-
rest (12). 
	 Adkins et al. addressed this problem with encrypted 
multi-maps, which are key-stores that support the Get and 
Put operations on the data (11). While proving its use in other 
public blockchains is a significant step towards practicability, 
this work implements its own blockchain and construction to 
test the feasibility of a database.
	 First, our work provides an in-depth security analysis on 
the blockchain framework described. To test the feasibility 
of the database, we tested the runtime and throughput. The 
throughput is the number of operations per second. Usually, 
the latency, throughput, and runtime are tested against 
common databases (13). As the server and client are both run 
locally, the latency is not tested. The independent variables of 
this study are Append, Query, Update, and Delete algorithms 
of the blockchain database. There are four hypotheses, each 
focusing on one of the independent variables. 
	 We hypothesized that if the Append method was called, 
then the runtime would have a positive linear correlation and 
throughput a negative linear correlation because the number 
of blocks in the database increases the height logarithmically, 
therefore the runtime would increase, and throughput 
decrease. 
	 Additionally, we proposed that if the Query method was 
called, then the runtime would be logarithmic and throughput 
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SUMMARY
	 Databases have revealed many vulnerabilities 
in which hackers can penetrate and gain access to 
the data. Blockchains have been proven useful to 
protect against fraud and data miners, exemplified 
in cryptocurrencies. In this paper, we propose a 
blockchain database framework as a non-relational 
database structure that integrates the properties 
of blockchains and databases. The independent 
variables when testing this database were the Append, 
Delete, Query, and Update functions in the database 
framework. We predicted that the Append, Query, and 
Update functions would have a logarithmic runtime 
and linear throughput; while the Delete function would 
have a constant runtime and throughput. The database 
was tested with about 150,000 operations with the 
server and client locally running. We observed the 
runtime was slightly positively correlated while the 
Delete was not positively correlated with the number 
of operations in the Append, Query, and Update 
functions. The throughput of the Append, Query, 
and Update functions were significantly negatively 
correlated with the number of operations.   The 
blockchain database framework displayed end-to-
end encryption and feasibility with this experiment. 
One possible application of the database framework 
is in the financial industry, as there is a one-to-one 
correspondence with user and transaction.   

INTRODUCTION
	 A blockchain is a distributed, shared ledger to keep 
unalterable records across computers. Blockchains have 
recently gain attention from research and industry through 
the rise of cryptocurrencies. Since the introduction of 
cryptocurrencies, the qualities of immutability and persistency 
attracted the implementation of blockchains in other 
technologies (1–2). One of these technologies includes non-
Structured Query Language (NoSQL) databases, which store 
data as documents, key-stores, and graphs (3). Comparing 
to their relational database cousins, which store data based 
on relationships between data, NoSQL databases are non-
relational and store data in different structures other than 
tables. The main advantages of these types of databases are 
the improvements in scalability and a data-structure-based 
database (4). Combining databases and blockchains would 
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linearly negative because since the database structure is a 
hybrid AVL tree, the runtime is reduced to logarithmic trend, 
so as runtime increases, the number of operations per second 
decreases. 
	 We theorized that if the Update method was called, then 
the runtime would be logarithmic and throughput linearly 
negative, which is due to the construction of the Update 
method as it calls the Delete method, then Append method, 
adding to a logarithmic runtime and decreased throughput. 
	 Finally, we hypothesized that if the Delete method was 
called, then the runtime would be constant and throughput 
would remain unchanged, as Python is the language of 
choice, deletion of an element in a dictionary is constant 
runtime and constant throughput (15). 
	 The purpose of this work is to combine and advance 
the field of blockchain databases and explore the security 
advantages. The blockchain database framework has proved 
its feasibility and security. The throughput and runtime both 
are aligned with the hypotheses, and this blockchain database 
framework can be implemented in the financial world, where 
one-to-one correspondence is needed. 

RESULTS
	 We tested the throughput and runtime on the blockchain 
database using a script that models Yahoo! Cloud Serving 
Benchmark (YCSB). Latency, which is usually coupled with 

throughput, was not tested for the blockchain database as the 
server and client were run locally. YCSB is routinely used to 
benchmark Structured Query Language (SQL) databases, 
so we tailored a script to perform the same functions for the 
blockchain database (17). We measured the performance of 
the database framework to determine if it was feasible. The 
script inputted test data with the size of 60 bytes into the 
database framework. It also conducted 143,640 operations 
of Append, Delete, Update, and Query functions each. 
The large amount of data and operations ensured that the 
database framework can be maintained. The script ran five 
times to ensure the computer and environment did not affect 
the results of the database. 

Throughput
	 The throughput is the average of five trials for each 
database function. The Append, Query, and Update functions 
showed a negative linear trend; however, the trend was 
not strong enough to be deemed as a strongly negative 
correlation (p=0.0; Figure 1). Yet, it shows that the Append, 
Query, and Update functions decrease slightly as the number 
of operations increase, which is significant (Table 1). The 
Delete function was excluded from the analysis as all 143,640 
operations were completed in under a second. The Query 
function throughput was noticeably higher than the Append 
and Update function.

Figure 1. Throughput Performance Comparison of Database 
Functions. Line graph showing throughput of the Update, Query, 
and Append functions. To reduce sampling variability, the moving 
average of the past 500 trials was recorded and each data point is 
the average of 5 trials. 

Figure 2. Runtime Performance Comparison of Database 
Functions. Line graph showing runtimes of the Update, Query, 
Append, and Delete functions. To reduce sampling variability, the 
moving average of the past 500 trials was recorded and each data 
point is the average of 5 trials. 

Function Correlation Significance p-value
Append negative significant <0.0001
Query negative significant <0.0001
Update negative significant <0.0001

Table 1. Throughput Correlation with Number of Operations.  
A Pearson correlation test was used to determine the number of 
operations and throughput of Append, Query, and Update functions 
(n=143640). 

Function Correlation Significance p-value
Append positive significant <0.0001
Delete positive not significant >0.80
Query positive significant <0.0001

Update positive significant <0.0001

Table 2. Runtime Correlation with Number of Operations. A 
Pearson correlation test was performed to establish the number 
of operations and runtime of Append, Query, Update, and Delete 
functions (n=143640). 
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Runtime
	 The runtime, which is the difference between wall time from 
the start of the function to the end, is defined by the average 
of five trials of each database function. The Append function 
runtime was noticeably higher than the Query, Update, and 
Delete function, while the Query and Update functions had 
similar runtimes (Figure 2). All four functions showed a 
slightly positive trend, yet the correlation between runtime 
and number of operations for Append, Query, and Update 

functions were significant, the Delete function correlation was 
not significant (p>0.80; Table 2). 

DISCUSSION
	 The runtime of the functions remained relatively stable, 
with a slight positive increase in the Append, Query, and 
Update functions. These results support our hypotheses as 
the Append, Query, and Update functions have linear trends. 
The Delete function also showed a positive correlation, yet 
not significant, which supports the hypothesis regarding the 
Delete function, where the runtime and throughput would be 
constant. 
	 The throughput of the Append, Query, and Update 
functions displayed a weak negative correlation, which 
supports our hypotheses. As the Delete function throughput 
was constant, it supports our hypothesis too. The throughput 
was low, yet this could have been influenced by the computer 
specifications of the Surface 3 Laptop. The server and client 
were ran locally on a personal computer, whereas databases 
are usually stored in large data centers. For the scope of 
this paper, using a personal computer was sufficient to test 
the blockchain database framework. The negative tendency 
could have been corrected by adding more threads to the 
database. Threads allow another instance of the database to 
run, which could increase the throughput exponentially. 
	 The throughput of the Append and Update function was 
significantly less than the Query function, which could have 
been due to the creation of a block in the database. All three 
of the functions have the same time complexity, which is 

Figure 4. Components of a block. Diagram showing each 
component of a block in the blockchai n database. The primary key 
is hashed with SHA256() and the JSON files are encrypted with 
AES-CTR. The key for AES-CTR is transferred between server and 
client by ECDH. 

Figure 3. Structure of blockchain database with directory dictionary. Diagram of each block pointing to the previous block. To query, 
the server is directed towards the directory dictionary to get the key to the block. The key acts as a directory when converted to binary, as 
0 is towards the right node and 1 is towards the left node. 
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outlined below, so the lower throughput was most likely due 
to the new block that is appended to the database framework.
	 Qualitatively, the time complexity (the amount of time 
taken by an algorithm to run as a function of the input) of the 
four functions are listed below.

Equation 1.1. Append function Time Complexity: O(log2 n+k).

	 Where n is the number of blocks and k is the overhead 
in creating a block. Let V be the length of characters of n2 
– 1, where n2 is n in base 2, and the Equation (Eq.) 1.1 be 
O(V+k). V can be approximated as log2 n+1 empirically, so 
Eq. 1.1 would result to O(log2 n+1+k). After disregarding the 
constants and converting to conventional standards, the time 
complexity of the Append function will be O(log2 n+k).

Equation 1.2. Delete function Time Complexity: O(1)

Eq. 1.2 has constant time complexity since it removes the 
directory of a block in the directory dictionary. 

Equation 1.3. Query function Time Complexity: O(log2n)

	 Where n is the number of blocks and k is the overhead 
in creating a block. Let V be the length of characters of n2 
– 1, where n2 is n in base 2, and the Eq. 1.3 be O(V). V can 
be approximated as log2 n+1 empirically, so Eq. 1.3 would 
result as O(log2 n+1). After disregarding the constants and 
converting to conventional standards, the time complexity of 
the Query function will be O(log2 n). 

Equation 1.4. Update function Time Complexity: O(log2 n+k)

	 Where n is the number of blocks and k is the overhead in 
creating a block. Let V be the length of characters of n2 – 1, 
where n2 is n in base 2, and the Eq. 1.4 be O(V+k). The extra 
constant is due to the deletion of a block to replace it with an 
updated one. V can be approximated as log2 n+1 empirically, 
so Eq. 1.4 would result as O(log2 n+2+k). After disregarding 

the constants and converting to conventional standards, the 
time complexity of the Update function will be O(log2 n+k).
	 In the future, we would like to continue to scale this 
blockchain database framework to a fully working database 
with an Application Programming Interface (API). We would 
also like to test out the database with more than one user to 
implement the decentralized aspect of a blockchain.  
	 Our paper presents a novel encrypted blockchain 
database framework and implements its own blockchain to 
test feasibility. The blockchain database framework was tested 
for runtime and throughput with about 150,000 operations. 
Overall, the runtime has no significant positive correlation 
with the number of operations and the throughput has a slight 
negative correlation with the number of operations. With the 
security of an encrypted database and the results from this 
paper that supports scalability, the architecture presented 
in this paper is feasible in the real world. Both metrics show 
promising future for a larger database, which includes load 
balancing, an API, and consistent data partitioning.

MATERIALS AND METHODS
	 To start the procedure of this research, the specifications 
of the computer was reviewed to ensure the following 
requirements were meet: Windows 11 (Version 21H2), 
PyCharm (Version 1.2), and Python Interpreter (Version 
3.9). The framework was implemented on a Surface Laptop 
3 with an Intel i7 CPU at 1.30 GHz and 16 GB RAM. The 
blockchain database was built in the Integrated Development 
Environment (IDE) and exported to GitHub. Using the Append, 
Query, Delete, and Update functions presented in the code, 
the throughput and runtime of the functions were measured. 
To test the database, a script was created to model the Yahoo! 
Cloud Serving Benchmark (YCSB) program and transferred 
all the output metrics to a CSV file. To test the significance 
of the data as the number of operations grow, a Pearson 
correlation test was used.

Encryption Scheme
The encryption used in this database framework was the 

Figure 5. Flowchart of an Append function. The JSON that the client inputs is encrypted with AES-CTR, which is transferred by ECDH to 
decrypt while querying. The primary key is hashed with SHA256(SHA256()) and the EMM is stored in the block. The location of the block in 
the blockchain database is obtained by the closet directory, which is essentially converting the number of blocks in the blockchain to a binary 
directory. The server uses the binary directory to get to the closest directory and appends the block with the EMM and hashed primary key.
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Elliptic Curve Diffie-Hellman Key Exchange (ECDH) with 
Advanced Encryption Standard in counter mode (AES-CTR). 
Elliptic curve cryptography was chosen for the key exchange 
between the server and the client because it is not as 
space consuming as Rivest-Shamir-Adleman (RSA). Diffie-
Hellman Key Exchange is an algorithm that facilitates the 
communication between the server and the client. ECDH uses 
the points on the elliptic curve to designate the private and 
public key of both client and server. To encrypt the JSON files, 
AES-CTR was used to provide secure symmetric encryption 
(11, 14). The AES key was transferred as the secret between 
the server and client using ECDH. 

Blockchain Database Structure
	 A blockchain database is a sequence of connected blocks, 
which holds the data as an EMM (Figure 3). The block header 
stores the previous block hash, allowing the block to only 
have one parent block. The starting block of the blockchain 
is named the genesis block, as it has no parent block. 
Blockchains display immutable blocks, decentralization, and 
data persistence (5). 
	 The blockchain database was created in a tree format, 
more specifically, an AVL tree. Instead of a linear blockchain, 
which would display the runtime of O(n), an AVL tree was used 
to ensure the height of the blockchain tree does not exceed 
log n, where n is the number of blocks in the blockchain and 
therefore runtime of O(log n). AVL trees are a type of self-
balancing tree, which means that they rearrange the nodes 
on the tree to make it the constant height. However, this is 
not possible in a blockchain, where each block is connected 
to another block through its hash and address. Therefore, it 
is not possible to rearrange the blocks on the tree to create 
an even height. To mitigate this, when appending a block into 
the chain, the block would be inserted at the closest directory. 
This directory was based on the next spot in the tree available 
to append. Each block was given a key, and according to the 
binary version of the key, the block will go to that directory, 
where 0 is left branch and 1 is the right branch. The closest 
directory of the block went to a separate dictionary, where the 
Query function references to find the block. This dictionary is 
called the directory dictionary.

Block
	 The two parts of the block are the block header and the 
block body (Figure 4). A block header comprises of:
Key: a number that references block number in the blockchain 
database and, when converted into binary, its directory to 
reach the block.
Parent block Hash: A hash of the previous block.
Timestamp: The block time is in Unix epoch time, the current 
time in seconds since January 1, 1970. 
	 The block body is formed with EMMs and primary key. The 
EMMs store the data that is directed by the user, as detailed 
above. The primary key is a string that references the EMM, 
where the user enters a primary key to find the corresponding 

data.

Algorithms
	 A blockchain database (BCD) consists of four algorithms. 
The first algorithm in BCD is the append algorithm.

Equation 2.1. (BCD’) ← Append(k, d, p)

Where k is the user-inputted primary key to search the 
database, d is the data corresponding to the primary key in 
the form of a JSON file, and p is the private key of the user to 
decrypt d. To append into the blockchain tree and retain the 
height of log n, the block is assigned a key, which is the current 
block number. The key is then converted into binary and used 
to navigate the tree to insert at a certain location, where 0 is 
the left branch and 1 is the right branch. A directory dictionary 
is used to store k and the key that it is given. (Figure 5)
	 The JSON file is converted into a Python dictionary then 
encrypted with the AES key, which was the secret message 
transmitted between the server and client using ECDH.
  	 The next algorithm in the BCD is the query function.

Equation 2.2. d ← Query(k, p) 
	 Where k is the primary key given to search for d and p is 
the client’s private key. The query method uses the key that 
corresponds to the primary key in the directory dictionary to 
find the block needed. The data d comes in the form of an 
EMM and gets decrypted on the client’s end. 
	 Furthermore, the next algorithm in the BCD is the delete 
function. 

Equation 2.3. (BCD’) ← Delete(p) 
Where p is the primary key that corresponds to the block. 
Blockchains are immutable, which makes deletions not 
possible. To create a fix to this problem, Eq. 3 uses the 
primary to delete the directory from the directory dictionary, 
and therefore cannot find the block when Eq. 2 is called. 
The final algorithm is the update algorithm,

Equation 2.4. (BCD’) ← Update(k, d, p)

Where k is the user-inputted primary key to search the 
database, d is the data to replace the current data, which 
is corresponding to the primary key in the form of a JSON 
file, and p is the private key of the user to decrypt d. Eq. 4 
is a combination of Eq. 1 and Eq. 3, where the function first 
deletes the existing entry with the primary key in the directory 
dictionary and then uses the append function to create another 
block with the same primary key and the newly inputted data. 
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Appendix
 GitHub Repository: https://github.com/ayushimehrotra/
Blockchain_Database.git
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