
2 OCTOBER 2022 | VOL 5 | 1Journal of Emerging Investigators • www.emerginginvestigators.org

techniques. Geometry diagram parsing in particular is an
essential part of a geometry-problem solver as geometry
diagrams often provide information that is missing in the
problem text. Furthermore, diagrams provide a way to test
the validity of inferences drawn from the problem text.

A geometry diagram parsing approach was proposed
by Chen, et al. in 2014 (1). This approach uses the Hough
Transform for both line and circle detection with some
additional heuristics (2, 3).

The first widely used geometry diagram parser, which
they called G-ALIGNER, was announced in 2014, by Seo,
et al. (4, 5, 6, 7). Seo, et al. then used their diagram parser
to design a geometry problem solver called GeoSolver in
2015 (4). Most other geometry problem solvers developed
since, such as the tools developed by Sachan, et al. and Lu,
et al., use the GeoSolver diagram parser (5, 6). One of the
only publicly available problem solvers that does not use the
GeoSolver diagram parser is the Neural Geometry Solver
(NGS), developed by Chen, et al. (8). However, NGS does
not explicitly detect lines, circles, or points but rather uses a
pretrained neural network to extract a feature matrix from the
diagram image. In addition to Seo, et al.'s diagram parser,
another method was announced by Song, et al. (9) in 2017
specially geared toward hand-drawn diagrams. This approach
does not use the Hough Transform and instead skeletonizes
the diagram and then works at the pixel level to detect points,
lines, and circles. While this approach is effective for hand-
drawn diagrams, it is slow compared to Hough Transform-
based methods.

The results of Seo, et al. and Lu, et al. indicate that a
large proportion of the error in geometry problem solving
algorithms is due to errors in diagram parsing (4, 6). Thus,
further research is necessary to improve geometry diagram
parsing. As a first step in this direction, we created the Fast
Geometry Diagram Parser (FastGDP), a novel and efficient
approach to diagram parsing. Unlike the GeoSolver diagram
parser, which uses a submodular optimization approach that
requires large numbers of computationally expensive pixel-
level calculations for primitive (line and circle) detection,
FastGDP uses a clustering-based approach to filter out false
positives and improve detection accuracy at the same time.
Furthermore, unlike GeoSolver, FastGDP uses results from
running the Harris corner detector on diagrams to improve
point detection performance—for instance, to filter out false
positive point detections. In addition, unlike Chen, et al.'s

An efficient approach to automated geometry diagram
parsing

SUMMARY
An automated geometry problem solver can be a
valuable tool in math education as a learning aid. An
essential part of such a system is the ability to parse
diagrams automatically, and diagram understanding
by itself is an interesting research problem because
of the rich and complex information that geometry
diagrams convey and the many approaches one
can take to extract that information. In this paper,
we introduce Fast Geometry Diagram Parser
(FastGDP), an efficient approach to geometry diagram
understanding that uses clustering and corner
information. We hypothesized that FastGDP would be
significantly faster than the widely used GeoSolver
tool at both primitive (line and circle) and point
detection, because FastGDP does not require large
numbers of computationally expensive pixel-level
calculations. We further hypothesized that FastGDP
would offer comparable performance to GeoSolver
on point detection, due to FastGDP’s use of corner
information. We expected FastGDP’s primitive
detection performance to be marginally lower than
that of GeoSolver due to the latter’s emphasis
on over-generation of primitives and subsequent
selection of the best detections. Our experiments
on three datasets (combined n=169) showed that
FastGDP is more than an order of magnitude faster
than GeoSolver in most cases. We found that FastGDP
reports comparable performance to GeoSolver on
primitive detection and slightly lower performance on
point detection. We believe that the speed advantage
offered by FastGDP will provide greater flexibility
when it is incorporated into an automated geometry
problem solver, especially if FastGDP is used within
the training loop of the solver.

INTRODUCTION
An automated geometry problem solver, which is a system

that can automatically determine the solution to a geometry
problem given the problem text and associated diagram, holds
potential for application in artificial-intelligence assisted math
education, especially if it can produce human-interpretable
solutions. Such a system must have two essential capabilities:
the ability to understand the problem text and the ability to
parse geometry diagrams. These capabilities are usually
achieved using artificial intelligence or machine learning

Nikhil Date1, Sachin Date2

1 Lilavatibai Podar High School, Mumbai, Maharashtra, India
2 e-Emphasys Technologies, Mumbai, Maharashtra, India

Article

2 OCTOBER 2022 | VOL 5 | 2Journal of Emerging Investigators • www.emerginginvestigators.org

method, FastGDP uses a parameter selection procedure
for circle detection, and also uses clustering to remove false
positive primitive detections (1).

Like FastGDP, the GeoSolver tool uses the Hough
Transform at its heart to detect lines and circles, or primitives.
GeoSolver sets the parameters of the Hough Transform so
that it over-generates primitives. GeoSolver then uses a
submodular optimization approach to select the best primitives
based on an objective function, which rewards covering most
of the black pixels in the image with primitives and detecting
larger lines and circles. This approach requires large numbers
of expensive pixel-level calculations to select primitives.
In contrast, FastGDP does not over-generate primitives.
Instead, FastGDP uses a parameter selection procedure for
circle detection and uses Density-Based Spatial Clustering
of Applications with Noise (DBSCAN) clustering for both line
and circle detection to filter out false positives (10).

In this study, we compared the detection performance and
the detection speed achieved by FastGDP for both primitive
and point detection to that of GeoSolver. We made the
following two hypotheses about the results of our experiments.

As FastGDP does not need to perform large numbers
of pixel-level calculations for primitive detection, and the
time for point detection is low compared to the time for
primitive detection, we hypothesized that FastGDP would
be significantly faster than GeoSolver at both primitive and
point detection. We expected that FastGDP would perform
somewhat worse at primitive detection than GeoSolver
because we expected GeoSolver’s submodular optimization
approach to be more robust, especially in the case of more
complex diagrams. This is because it avoids the parameter
sensitivity of Hough Transform-based methods by using
parameters that always over-generate primitives. On the
other hand, as FastGDP uses corner information to filter
out false positive point detections and to detect points that
would otherwise not be detected due to mistakes in primitive
detection, we expected that FastGDP would offer point
detection performance comparable to that of GeoSolver.

Our results showed that FastGDP was significantly faster
than GeoSolver while achieving comparable performance
with GeoSolver (as quantified by the F1 score) on primitive
detection, but it achieved slightly lower performance on point
detection.

RESULTS
To test the functionality of FastGDP, we compared the

performance of FastGDP and GeoSolver on three geometry
diagram datasets of varying diagrammatic complexity and
containing a wide variety of types of diagrams, which we call
Dataset 1, Dataset 2, and Dataset 3 (Figure 1). The first two
datasets were used while building FastGDP, while the third
consisted of unseen images.

Precision, Recall and F1 Score
In keeping with the metrics used by Seo, et al., we used

precision, recall, and F1 scores to quantify the detection
performance of FastGDP and GeoSolver (7). To calculate
these metrics for a particular diagram and diagram parser, we
ran the diagram parser on that diagram and programmatically
determined the number of correctly detected primitives and
points. We chose to present micro-averaged metrics, as the
number of primitives and points tends to vary considerably
among different diagrams, and the micro-averaged metric
weights each detection equally rather than weighting each
diagram equally.

We calculated precision, recall, and F1 from the information
about the correctly detected and ground truth points and
primitives. The F1 score can be considered to be a combined
metric for precision and recall, so the value of the F1 score
alone is a good indicator of the detection performance of a
particular diagram parser on a particular task.

We found that FastGDP’s precision on primitives on
Dataset 1 was significantly higher than that of GeoSolver
(p-value = 0.0067) (Table 1), while GeoSolver’s recall on
primitives on Dataset 2 and its recall and F1 score on points
on Dataset 3 set were all significantly higher than that of
FastGDP. (Table 2, Table 3). In all other cases, we found no
statistically significant difference between FastGDP’s and
GeoSolver’s performance.

Between precision and recall, among all three datasets
and for both primitives and points, the only metric where
FastGDP performed consistently worse than GeoSolver was
recall for both primitive and point detection, although this
reduction in performance was statistically significant only
for point detection on Dataset 3 and primitive detection on
Dataset 2 (Table 2, Table 3). Additionally, the lower recall
was often compensated for by higher precision, leading to F1
scores that were comparable to those achieved by GeoSolver.

Figure 1: Selected diagrams from the three datasets used in this paper in increasing order of complexity. A) Representative diagram
from Dataset 1. B) Representative diagram from Dataset 2. C) Representative diagram from Dataset 3. Diagram A is the least complex and
Diagram C is the most complex.

2 OCTOBER 2022 | VOL 5 | 3Journal of Emerging Investigators • www.emerginginvestigators.org

Distribution of F1 Scores
Even though aggregate metrics like micro-averaged

precision, recall, and F1 score are useful for assessing the
overall performance of a diagram parser on a particular task
and dataset, they do not tell the entire story. For instance,
two diagram parsers might have the same micro-averaged
F1 score on a particular dataset, but the first might achieve
perfect results on many more diagrams than the second.
Depending on how tolerant to errors in diagram parsing
a particular geometry-problem solver is, that geometry
problem-solver might perform worse overall if the second
diagram parser is used than if the first one is.

This made it important for us to look at the distribution
of F1 scores achieved by both GeoSolver and FastGDP
on primitive and point detection. For both primitive and
point detection, both FastGDP and GeoSolver had similar
distributions (Figure 2).

Speed
We also computed the detection time per diagram

averaged over five runs (to get a more accurate result) for
both FastGDP and GeoSolver on the point detection and
primitive detection tasks for each dataset.

On Datasets 1 and 2, FastGDP was more than an order
of magnitude faster for both primitive and point detection
(Figure 3). On Dataset 3, FastGDP was about 7.3 times faster
for primitive detection and around 5 times faster for point
detection (Figure 3). All pairwise differences in time were
statistically significant (Figure 3). FastGDP’s time advantage
across all datasets was also statistically significant for both
primitive point detection.

DISCUSSION
Our experiments confirmed our hypothesis that FastGDP

is significantly faster than GeoSolver at both primitive and
point detection. In fact, we found that the overall speed of
FastGDP as compared to GeoSolver across all datasets
is more than an order of magnitude higher for primitive
detection and almost an order of magnitude higher for point
detection. An interesting observation was that the time

Table 2: Comparison of FastGDP and GeoSolver detection performance on Dataset 2 (n = 40). Precision, recall, and F1 scores are
micro-averaged. The better score for each combination of dataset and metric is bolded. p-values less than 0.05 (if any) are also bolded.

Table 1: Comparison of FastGDP and GeoSolver detection performance on Dataset 1 (n = 65). Precision, recall, and F1 scores are
micro-averaged. The better score for each combination of dataset and metric is bolded. p-values less than 0.05 (if any) are also bolded.

Table 3: Comparison of FastGDP and GeoSolver detection performance on Dataset 3 (n = 64). Precision, recall, and F1 scores are
micro-averaged. The better score for each combination of dataset and metric is bolded. p-values less than 0.05 (if any) are also bolded.

2 OCTOBER 2022 | VOL 5 | 4Journal of Emerging Investigators • www.emerginginvestigators.org

advantage offered by FastGDP seemed to increase with an
increase in the complexity of the diagrams. FastGDP had
the greatest time advantage on Dataset 2 and the least time
advantage on Dataset 3 (which contained the simplest set
of diagrams among the three data sets). When diagrams are
complex, GeoSolver needs to perform more computationally
expensive calculations to detect primitives, which slows it
down. Furthermore, we observed that FastGDP provided

no additional time advantage for point detection over the
advantage already provided for primitive detection. This is
consistent with our hypothesis, since GeoSolver performs the
most pixel-level calculations for primitive detection.

We also hypothesized that FastGDP will perform somewhat
worse at primitive detection but comparably at point detection
when compared to GeoSolver. However, the results were
contrary to this hypothesis. We found that FastGDP offered
comparable performance to GeoSolver on primitive detection,
which did not agree with our prediction. However, FastGDP’s
F1 score for point detection on the Dataset 3 was worse than
that of GeoSolver, even though the combined performance
on all datasets was not significantly worse. This suggests that
the corner detection approach is not as robust as expected
on unseen images, and some further work is necessary here.

If overfitting had taken place when FastGDP was being
designed, we would have expected it to perform worse on
Dataset 3 (containing unseen diagrams) than on the other two
datasets. However, as FastGDP actually performed slightly
better on Dataset 3 than on the other datasets for both primitive
and point detection (perhaps due to the lower complexity of
diagrams), we concluded that significant overfitting did not
take place when FastGDP was being designed. However,
GeoSolver did have a higher F1 score than FastGDP on point
detection on Dataset 3 as it outperformed FastGDP in recall.

Another interesting observation was that, while FastGDP’s
point detection F1 score was lower for Dataset 2 (containing
complex diagrams) than for the other two datasets, it was
lower to a smaller extent than the primitive detection F1 score.
This may suggest that the corner information was helping to

Figure 2: Distributions of F1 scores achieved by FastGDP and
GeoSolver for primitive and point detection on all datasets taken
together (n = 169). This figure shows histograms and associated
KDE plots of the F1 scores achieved by (A) FastGDP on primitive
detection, (B) GeoSolver on primitive detection, (C) FastGDP on
point detection, and (D) GeoSolver on point detection.

Figure 3: Average time per diagram for Primitive Detection and Primitive + Point Detection for every combination of diagram
parser, dataset, and task. This figure shows comparisons of the average time per diagram for both Primitive Detection and Primitive + Point
Detection for FastGDP (blue) and GeoSolver (red) on (A) Dataset 1 (B) Dataset 2 and (C) Dataset 3. Each diagram parser was run on each
diagram image 5 times for each task and the results of the 5 runs were averaged. p < .001 is shown as ***.

2 OCTOBER 2022 | VOL 5 | 5Journal of Emerging Investigators • www.emerginginvestigators.org

compensate for lower primitive detection accuracy.
A limitation of FastGDP is that a large number of spurious

corner detections are produced along jagged edges if the
image is of very low quality. This can happen especially
when the lines and circles are heavily aliased or have very
rough edges. It is possible that this could be fixed using
preprocessing steps like blurring, but this would have to be
performed without losing diagram detail. Additionally, an
overly smoothed image might prevent actual corners in the
diagram from being detected correctly. Another limitation is
that, unlike Song, et al.’s method, FastGDP is not designed
for parsing hand-drawn diagrams (9).

A limitation of our experiments is that two of the datasets
on which we reported data were used when building FastGDP.
However, this did not affect the speed results, as FastGDP
was not optimized for speed in any way that depended on
a particular dataset. In addition, we believed that reporting
detection performance data from all three datasets was
necessary since the three datasets we used differed in both
source and complexity of diagrams. This means that the
results on the third dataset alone were not representative of
the results on all datasets.

While FastGDP has shown promising results in our
experiments, further work is necessary to make use of the
advantages of FastGDP in an automated geometry problem
solver. The corner detection is not as robust as initially
expected, so more research is required to improve the corner
detection. If the corner detection accuracy can be significantly
improved, it might be possible for FastGDP to consistently
outperform GeoSolver in point detection accuracy while still
maintaining a speed advantage. A possible way to do this
would be to use SMBO (sequential model-based optimization)
techniques such as Bayesian Optimization or Tree of Parzen
Estimators (TPE) to optimize the parameters of the corner
detector (11).

We believe that the speed advantage offered by FastGDP
would be particularly beneficial if FastGDP were to be used in
the training loop of a larger geometry problem solving system.
A significant speed advantage would offer greater flexibility in
training a larger model and would also allow the parameters
of FastGDP to be tuned simultaneously while training the
larger model. None of the currently available geometry
problem solvers that use GeoSolver to parse diagrams
have attempted to tune GeoSolver’s parameters to improve
detection accuracy for their specific use cases. Furthermore,
a faster diagram parser will make it more feasible to run input
images through the diagram parser in every training step
instead of precomputing diagram features, which will enable
image augmentation to be used in the training process.

In summary, the contributions of this paper to the
field of geometry problem solving are two-fold: Firstly, we
provide a diagram parser that is significantly faster than the
currently available GeoSolver tool while offering comparable
performance in most cases. Secondly, we present a novel
approach for geometry diagram parsing that adds to the

literature on the subject and helps inspire future research.

MATERIALS AND METHODS
Datasets

Dataset 1 contained the training data used by GeoSolver
and consisted of 65 geometry diagrams. This dataset
was compiled by Seo, et al. and consisted of high-school
level geometry questions with corresponding geometry
diagrams sourced from test-preparation websites such as
RegentsPrepCenter, EdHelper, etc. (7). Dataset 2 was a new
dataset containing 40 geometry diagrams that we created
manually. It consisted of significantly more complex geometry
diagrams than those in the first dataset (this dataset did not
have associated geometry questions since FastGDP only
deals with diagrams). Dataset 3 is the GeoSolver test data
containing 64 official SAT® Geometry Questions. The images
in this dataset had never been used while designing FastGDP.
Dataset 3 contained the simplest geometry diagrams on
average, and Dataset 2 contained the most complex ones
(Figure 1).

For each dataset, we manually annotated the points and
primitives using the Computer Vision Annotation Tool (CVAT)
to provide the ground truth line, circle, and point data to
compare the results of the algorithms with during testing (12).

Metrics and Evaluation
To test the accuracy of both FastGDP and GeoSolver,

we ran each diagram parser on each diagram in the three
datasets and then ran code that compared the detections for
both primitives and points with the ground truth annotations
to determine precision, recall, and F1 score. In doing this,
we needed to determine which of the point and primitive
detections produced by FastGDP or GeoSolver were correct
(i.e, they matched up with a ground truth point or primitive).
We did this as follows:

FastGDP uses the Hesse normal form to represent lines,
which represents a line by two variables, rho and theta. For
line detection, we considered a predicted line to match a
ground truth line if the difference between the theta values
of the two lines was less than 0.1 radians (5.73 degrees) and
the difference between the in rho values was less than 5% of
the average dimension of the image. For circle detection, we
considered a predicted circle to match a ground truth circle if
the IOU (Intersection over Union) was more than 0.8. For point
detection, we considered a predicted point to match a ground
truth point if the distance between the points was less than
5% of the average dimension of the image. We chose these
thresholds for point and line detection as geometry diagrams
typically do not have two points or lines respectively that
differ by less than the chosen thresholds, so that it would be
unlikely for a wrongly detected point or line to be considered
correctly detected. The threshold for circle detection was the
same as the one used by Seo, et al. (7).

We then calculated precision and recall for each diagram
parser for each task as follows:

2 OCTOBER 2022 | VOL 5 | 6Journal of Emerging Investigators • www.emerginginvestigators.org

(1)

(2)

(3)

(4)

The F1 score for primitives was calculated using precision
and recall for primitives, and the F1 score for points was
calculated using precision and recall for points. In each case,
we computed the F1 score as follows:

(5)

To generate the results for speed for some combination
of diagram parser, task (primitive or point detection), and
diagram, we ran the diagram parser on each diagram
five times for that task, measured the time for each run
(programmatically), and then averaged the five values to
determine the average detection time. We repeated this
process for every combination of diagram parser, task, and
diagram.

We ran all experiments on a desktop computer having
an Intel i7-7700k Central Processing Unit (CPU), integrated
graphics, and 32 GB of RAM.

Statistical Methods
	 When calculating a p-value for comparing the performance
of FastGDP and GeoSolver on some combination of metric
and dataset, we paired up the values achieved by FastGDP
and GeoSolver on that metric. We then ran the one-sided
paired t-test on the paired data using Google Sheets. For
precision, recall, and F1, the alternate hypothesis was that
GeoSolver’s performance was better (i.e. higher), while for
average detection time, the alternate hypothesis was that
FastGDP’s performance was better. (i.e. lower). We set the
threshold for statistical significance at p < 0.05.

Diagram Parsing Pipeline
FastGDP was written in the Python programming language

(version 3.6.4). FastGDP uses the OpenCV Python library for
image processing (13).

When performing primitive or point detection on a
diagram image, FastGDP first uses connected component
analysis as a pre-processing step (as text labels usually
tend to be separate connected components) to remove all
text labels from the image to prevent them from interfering
with the line, circle, and corner detection (Figure 4). To do
this, the image is first binarized using Otsu’s method (14) .
This method is used as it avoids having to set a hardcoded
threshold for binarizing the image. Then, the connected
components in the input image are determined using
OpenCV’s connectedComponentsWithStats method, and the
largest connected component is retained. All other connected
components are replaced by white pixels.

After the preprocessing step, FastGDP detects circles in
the diagram image using the Circle Hough Transform (CHT),

Figure 4: Summary of steps followed by FastGDP for point detection (primitive detection is an intermediate step) on a sample
image. A) Input image. B) Result of text removal. C) Result of circle detection. D) Result of circle pixel removal. E) Result of line detection. F)
Result of corner and intersection detection. G) Result of corner and intersection clustering. H) Result of cluster averaging and point filtering.
Only steps B-E are used for primitive detection.

2 OCTOBER 2022 | VOL 5 | 7Journal of Emerging Investigators • www.emerginginvestigators.org

a standard circle detection algorithm (Figure 4) (3). The
CHT is sensitive to the choice of parameters, especially the
accumulator threshold. This threshold is the minimum value
required in the accumulator array cell corresponding to a
particular circle for the circle to be considered a true positive.
If this threshold is too low, many false positive circles are
detected, and if it is too high, no circles are detected even if
the image contains circles. So, FastGDP uses binary search
(for efficiency reasons) to determine the highest value of
the accumulator threshold in the range [0, 150] for which at
least one circle is detected. If this value is less than or equal
to 70, FastGDP discards the results of the circle detector,
since a very low value suggests that the image contains no
circles, and the detected circles are false positives. At this
stage, there could still be some duplicate circle detections, so
FastGDP clusters the centers of the circles using the DBSCAN
clustering algorithm and averages the center coordinates and
radii within each cluster (10).

Next, FastGDP masks out all the circle pixels in the image
using a disc-shaped mask for each circle (Figure 4). This
reduces the chance of false positive lines being detected
along circles. Next, unlike GeoSolver, which uses the
Standard Hough Transform, FastGDP uses the Progressive
Probabilistic Hough Transform (PPHT) to detect lines
(Figure 4) (3). The PPHT generally produces more accurate
line detections, which circumvents the necessity of a primitive
selection algorithm. However, the PPHT does sometimes
detect duplicate lines. To overcome this, the lines are first
converted to Hesse normal form since line endpoint data is not
required for the subsequent steps. In Hesse normal form, a
line is represented by two variables: rho (which represents the
length of the perpendicular drawn from the origin to the line)
and theta (which is the angle the perpendicular makes with
the positive x axis). This also means that the dimensionality
of the line data is reduced from four to two. Then, DBSCAN
clustering is used in the rho-theta space followed by intra-
cluster averaging. Since the rho-theta space is essentially in
polar coordinates, the following metric is used instead of the
standard Euclidean metric, where (ρ1, θ1) and (ρ2, θ2) are the
rho-theta value pairs (in the Hesse normal form) for the first
and second lines respectively and d(ρ1, θ1, ρ2, θ2) is the value
of the metric:

(6)

where

(7)

(8)

And ℓmax is the maximum dimension of the image.

This metric is very similar to the one used by Liu, et al.
(15).

At this stage, all primitives have been detected. While
FastGDP does not need to detect line endpoints manually like
GeoSolver, this can be done if necessary while incorporating
FastGDP into a larger problem solver at minimal time
overhead, since the final line detection usually does not
contain more than 10 lines for most diagrams and usually
contains 4-6 lines. In contrast, GeoSolver must detect
endpoints of all over-generated lines. (By default, the number
of over-generated lines is 40.)

Next, intersection points between primitives and corners
are calculated (Figure 4). For detecting corners, the Harris
corner detector, a standard corner detection algorithm, is
used (16). The output of the Harris corner detector is also
used for removing false positive corner detections. For this
purpose, the corner response map is first dilated generously
to prevent correctly detected intersection points from being
filtered out. Then only those intersection points are retained
which are in a corner region.

The corners and intersection points are then clustered
using the DBSCAN clustering algorithm (Figure 4). The
DBSCAN algorithm is used here (and during line and circle
detection) mainly because the number of clusters is not
known beforehand. For each cluster, the coordinates of the
intersection points within the cluster, if the cluster contains at
least one intersection point, or the corner points, if the cluster
contains no intersection points, are averaged to determine
the single point associated with that cluster. For each point
so detected, FastGDP determines which (if any) detected
lines or circles the point lines on. Finally, only those points
are retained which lie on at least one line or circle or are the
center of a circle. For images containing at least one circle,
only those points are retained for which the corresponding
cluster contains at least one intersection point, that is, clusters
containing only corners are not retained (Figure 4). This is
because when circles are present in the image, the output of
the Harris corner detector often contains many false positive
corners around the circle. The points retained in the previous
step are finally returned.

The source code for FastGDP with usage instructions
can be found at bit.ly/FastGDPrepo. This GitHub repository
also contains the three datasets mentioned in this paper with
annotations for each dataset.

ACKNOWLEDGMENTS
	 We would sincerely like to thank the authors of the
OpenCV library for providing excellent documentation and
usage guides.

Received: November 25, 2021
Accepted: June 9, 2022
Published: October 2, 2022

2 OCTOBER 2022 | VOL 5 | 8Journal of Emerging Investigators • www.emerginginvestigators.org

REFERENCES
1.	 Chen, Xiaoyu, et al. “Automated generation of

geometric theorems from images of diagrams.” Annals
of Mathematics and Artificial Intelligence, vol. 74, 2014,
pp. 333-358.

2.	 Matas, J., et al. “Robust Detection of Lines Using the
Progressive Probabilistic Hough Transform.” Computer
Vision and Image Understanding, vol. 78, no. 1, 2000,
pp. 119–137. doi:10.1006/cviu.1999.0831.

3.	 Yuen, HK, et al. “Comparative Study of Hough Transform
Methods for Circle Finding.” Image and Vision Computing,
vol. 8, no. 1, 1990, pp. 71–77. doi:10.1016/0262-
8856(90)90059-e.

4.	 Seo, Minjoon, et al. “Solving Geometry Problems:
Combining Text and Diagram Interpretation.” Proceedings
of the 2015 Conference on Empirical Methods in Natural
Language Processing, Association for Computational
Linguistics, Sept. 2015, pp. 1466–1476.

5.	 Sachan, Mrinmaya and Eric Xing. “Learning to
Solve Geometry Problems from Natural Language
Demonstrations in Textbooks.” Proceedings of the
6th Joint Conference on Lexical and Computational
Semantics (*SEM 2017), Association for Computational
Linguistics, Aug. 2017, pp. 251–261.

6.	 Lu, Pan, et al. “Inter-GPS: Interpretable Geometry
Problem Solving with Formal Language and Symbolic
Reasoning.” Proceedings of the 59th Annual Meeting of
the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Association for
Computational Linguistics, Aug. 2021, pp. 6774– 6786.

7.	 Seo, Min Joon, et al. “Diagram Understanding in
Geometry Questions.” Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 28, no. 1, June
2014, doi:10.1609/aaai.v28i1.9146.

8.	 Chen, Jiaqi, et al. “GeoQA: A Geometric Question
Answering Benchmark towards Multimodal Numerical
Reasoning.” Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, 2021, doi:10.18653/
v1/2021.findings-acl.46.

9.	 Song, Dan, et al. “Retrieving Geometric Information
from Images: The Case of Hand-Drawn Diagrams.” Data
Mining and Knowledge Discovery, vol. 31, no. 4, 2017,
pp. 934–971., doi:10.1007/s10618-017-0494-1.

10.	 Ester, Martin, et al. “A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases
with Noise” Proceedings of the Second International
Conference on Knowledge Discovery and
Data Mining, KDD’96, 1996, pp. 226–23. doi:
10.5555/3001460.3001507

11.	 Bergstra, James, et al. “Algorithms for Hyper-Parameter
Optimization.” Proceedings of the 24th International
Conference on Neural Information Processing Systems,
2011, pp. 2546–2554. doi: 10.5555/2986459.2986743

12.	 Sekachev, Boris, et al. “opencv/cvat: v1.6.0.” Sep. 2021.

doi:10.5281/zenodo.4009388.
13.	 Bradski, G. “The OpenCV Library.” Dr. Dobb’s Journal of

Software Tools, 2000.
14.	 Otsu, Nobuyuki. “A Threshold Selection Method from

Gray-Level Histograms.” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 9, no. 1, 1979, pp. 62–66.,
doi:10.1109/tsmc.1979.4310076.

15.	 Liu, Hui, et al. “Hough Transform and Clustering for a 3-D
Building Reconstruction with Tomographic SAR Point
Clouds.” Sensors, vol. 19, no. 24, 2019. doi:10.3390/
s19245378.

16.	 Harris, C., and M. Stephens. “A Combined Corner
and Edge Detector.” Proceedings of the Alvey Vision
Conference 1988, 1988, doi:10.5244/c.2.23.

Copyright: © 2022 Date and Date. All JEI articles are
distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

