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techniques.  Geometry diagram parsing in particular is an 
essential part of a geometry-problem solver as geometry 
diagrams often provide information that is missing in the 
problem text. Furthermore, diagrams provide a way to test 
the validity of inferences drawn from the problem text. 

A geometry diagram parsing approach was proposed 
by Chen, et al. in 2014 (1). This approach uses the Hough 
Transform for both line and circle detection with some 
additional heuristics (2, 3).

The first widely used geometry diagram parser, which 
they called G-ALIGNER, was announced in 2014, by Seo, 
et al. (4, 5, 6, 7). Seo, et al. then used their diagram parser 
to design a geometry problem solver called GeoSolver in 
2015 (4). Most other geometry problem solvers developed 
since, such as the tools developed by Sachan, et al. and Lu, 
et al., use the GeoSolver diagram parser  (5, 6). One of the 
only publicly available problem solvers that does not use the 
GeoSolver diagram parser is the Neural Geometry Solver 
(NGS), developed by Chen, et al. (8). However, NGS does 
not explicitly detect lines, circles, or points but rather uses a 
pretrained neural network to extract a feature matrix from the 
diagram image. In addition to Seo, et al.'s diagram parser, 
another method was announced by Song, et al. (9) in 2017 
specially geared toward hand-drawn diagrams. This approach 
does not use the Hough Transform and instead skeletonizes 
the diagram and then works at the pixel level to detect points, 
lines, and circles. While this approach is effective for hand-
drawn diagrams, it is slow compared to Hough Transform-
based methods. 

The results of Seo, et al. and Lu, et al. indicate that a 
large proportion of the error in geometry problem solving 
algorithms is due to errors in diagram parsing (4, 6). Thus, 
further research is necessary to improve geometry diagram 
parsing. As a first step in this direction, we created the Fast 
Geometry Diagram Parser (FastGDP), a novel and efficient 
approach to diagram parsing. Unlike the GeoSolver diagram 
parser, which uses a submodular optimization approach that 
requires large numbers of computationally expensive pixel-
level calculations for primitive (line and circle) detection, 
FastGDP uses a clustering-based approach to filter out false 
positives and improve detection accuracy at the same time. 
Furthermore, unlike GeoSolver, FastGDP uses results from 
running the Harris corner detector on diagrams to improve 
point detection performance—for instance, to filter out false 
positive point detections. In addition, unlike Chen, et al.'s 
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SUMMARY
An automated geometry problem solver can be a 
valuable tool in math education as a learning aid. An 
essential part of such a system is the ability to parse 
diagrams automatically, and diagram understanding 
by itself is an interesting research problem because 
of the rich and complex information that geometry 
diagrams convey and the many approaches one 
can take to extract that information. In this paper, 
we introduce Fast Geometry Diagram Parser 
(FastGDP), an efficient approach to geometry diagram 
understanding that uses clustering and corner 
information. We hypothesized that FastGDP would be 
significantly faster than the widely used GeoSolver 
tool at both primitive (line and circle) and point 
detection, because FastGDP does not require large 
numbers of computationally expensive pixel-level 
calculations. We further hypothesized that FastGDP 
would offer comparable performance to GeoSolver 
on point detection, due to FastGDP’s use of corner 
information. We expected FastGDP’s primitive 
detection performance to be marginally lower than 
that of GeoSolver due to the latter’s emphasis 
on over-generation of primitives and subsequent 
selection of the best detections. Our experiments 
on three datasets (combined n=169) showed that 
FastGDP is more than an order of magnitude faster 
than GeoSolver in most cases. We found that FastGDP 
reports comparable performance to GeoSolver on 
primitive detection and slightly lower performance on 
point detection. We believe that the speed advantage 
offered by FastGDP will provide greater flexibility 
when it is incorporated into an automated geometry 
problem solver, especially if FastGDP is used within 
the training loop of the solver.

INTRODUCTION
An automated geometry problem solver, which is a system 

that can automatically determine the solution to a geometry 
problem given the problem text and associated diagram, holds 
potential for application in artificial-intelligence assisted math 
education, especially if it can produce human-interpretable 
solutions. Such a system must have two essential capabilities: 
the ability to understand the problem text and the ability to 
parse geometry diagrams. These capabilities are usually 
achieved using artificial intelligence or machine learning 
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method, FastGDP uses a parameter selection procedure 
for circle detection, and also uses clustering to remove false 
positive primitive detections (1). 

Like FastGDP, the GeoSolver tool uses the Hough 
Transform at its heart to detect lines and circles, or primitives. 
GeoSolver sets the parameters of the Hough Transform so 
that it over-generates primitives. GeoSolver then uses a 
submodular optimization approach to select the best primitives 
based on an objective function, which rewards covering most 
of the black pixels in the image with primitives and detecting 
larger lines and circles. This approach requires large numbers 
of expensive pixel-level calculations to select primitives. 
In contrast, FastGDP does not over-generate primitives. 
Instead, FastGDP uses a parameter selection procedure for 
circle detection and uses Density-Based Spatial Clustering 
of Applications with Noise (DBSCAN) clustering for both line 
and circle detection to filter out false positives (10). 

In this study, we compared the detection performance and 
the detection speed achieved by FastGDP for both primitive 
and point detection to that of GeoSolver. We made the 
following two hypotheses about the results of our experiments.

As FastGDP does not need to perform large numbers 
of pixel-level calculations for primitive detection, and the 
time for point detection is low compared to the time for 
primitive detection, we hypothesized that FastGDP would 
be significantly faster than GeoSolver at both primitive and 
point detection. We expected that FastGDP would perform 
somewhat worse at primitive detection than GeoSolver 
because we expected GeoSolver’s submodular optimization 
approach to be more robust, especially in the case of more 
complex diagrams. This is because it avoids the parameter 
sensitivity of Hough Transform-based methods by using 
parameters that always over-generate primitives. On the 
other hand, as FastGDP uses corner information to filter 
out false positive point detections and to detect points that 
would otherwise not be detected due to mistakes in primitive 
detection, we expected that FastGDP would offer point 
detection performance comparable to that of GeoSolver. 

Our results showed that FastGDP was significantly faster 
than GeoSolver while achieving comparable performance 
with GeoSolver (as quantified by the F1 score) on primitive 
detection, but it achieved slightly lower performance on point 
detection.

RESULTS
To test the functionality of FastGDP, we compared the 

performance of FastGDP and GeoSolver on three geometry 
diagram datasets of varying diagrammatic complexity and 
containing a wide variety of types of diagrams, which we call 
Dataset 1, Dataset 2, and Dataset 3 (Figure 1). The first two 
datasets were used while building FastGDP, while the third 
consisted of unseen images.

Precision, Recall and F1 Score
In keeping with the metrics used by Seo, et al., we used 

precision, recall, and F1 scores to quantify the detection 
performance of FastGDP and GeoSolver (7). To calculate 
these metrics for a particular diagram and diagram parser, we 
ran the diagram parser on that diagram and programmatically 
determined the number of correctly detected primitives and 
points. We chose to present micro-averaged metrics, as the 
number of primitives and points tends to vary considerably 
among different diagrams, and the micro-averaged metric 
weights each detection equally rather than weighting each 
diagram equally.

We calculated precision, recall, and F1 from the information 
about the correctly detected and ground truth points and 
primitives. The F1 score can be considered to be a combined 
metric for precision and recall, so the value of the F1 score 
alone is a good indicator of the detection performance of a 
particular diagram parser on a particular task.

We found that FastGDP’s precision on primitives on 
Dataset 1 was significantly higher than that of GeoSolver 
(p-value = 0.0067) (Table 1), while GeoSolver’s recall on 
primitives on Dataset 2 and its recall and F1 score on points 
on Dataset 3 set were all significantly higher than that of 
FastGDP. (Table 2, Table 3). In all other cases, we found no 
statistically significant difference between FastGDP’s and 
GeoSolver’s performance.

Between precision and recall, among all three datasets 
and for both primitives and points, the only metric where 
FastGDP performed consistently worse than GeoSolver was 
recall for both primitive and point detection, although this 
reduction in performance was statistically significant only 
for point detection on Dataset 3 and primitive detection on 
Dataset 2 (Table 2, Table 3). Additionally, the lower recall 
was often compensated for by higher precision, leading to F1 
scores that were comparable to those achieved by GeoSolver.

Figure 1: Selected diagrams from the three datasets used in this paper in increasing order of complexity. A) Representative diagram 
from Dataset 1. B) Representative diagram from Dataset 2. C) Representative diagram from Dataset 3. Diagram A is the least complex and 
Diagram C is the most complex.
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Distribution of F1 Scores
Even though aggregate metrics like micro-averaged 

precision, recall, and F1 score are useful for assessing the 
overall performance of a diagram parser on a particular task 
and dataset, they do not tell the entire story. For instance, 
two diagram parsers might have the same micro-averaged 
F1 score on a particular dataset, but the first might achieve 
perfect results on many more diagrams than the second. 
Depending on how tolerant to errors in diagram parsing 
a particular geometry-problem solver is, that geometry 
problem-solver might perform worse overall if the second 
diagram parser is used than if the first one is.

This made it important for us to look at the distribution 
of F1 scores achieved by both GeoSolver and FastGDP 
on primitive and point detection. For both primitive and 
point detection, both FastGDP and GeoSolver had similar 
distributions (Figure 2).

Speed
We also computed the detection time per diagram 

averaged over five runs (to get a more accurate result) for 
both FastGDP and GeoSolver on the point detection and 
primitive detection tasks for each dataset. 

On Datasets 1 and 2, FastGDP was more than an order 
of magnitude faster for both primitive and point detection 
(Figure 3). On Dataset 3, FastGDP was about 7.3 times faster 
for primitive detection and around 5 times faster for point 
detection (Figure 3). All pairwise differences in time were 
statistically significant (Figure 3). FastGDP’s time advantage 
across all datasets was also statistically significant for both 
primitive point detection.

DISCUSSION
Our experiments confirmed our hypothesis that FastGDP 

is significantly faster than GeoSolver at both primitive and 
point detection. In fact, we found that the overall speed of 
FastGDP as compared to GeoSolver across all datasets 
is more than an order of magnitude higher for primitive 
detection and almost an order of magnitude higher for point 
detection. An interesting observation was that the time 

Table 2: Comparison of FastGDP and GeoSolver detection performance on Dataset 2 (n = 40). Precision, recall, and F1 scores are 
micro-averaged. The better score for each combination of dataset and metric is bolded. p-values less than 0.05 (if any) are also bolded.

Table 1: Comparison of FastGDP and GeoSolver detection performance on Dataset 1 (n = 65). Precision, recall, and F1 scores are 
micro-averaged. The better score for each combination of dataset and metric is bolded. p-values less than 0.05 (if any) are also bolded.

Table 3: Comparison of FastGDP and GeoSolver detection performance on Dataset 3 (n = 64). Precision, recall, and F1 scores are 
micro-averaged. The better score for each combination of dataset and metric is bolded. p-values less than 0.05 (if any) are also bolded.
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advantage offered by FastGDP seemed to increase with an 
increase in the complexity of the diagrams. FastGDP had 
the greatest time advantage on Dataset 2 and the least time 
advantage on Dataset 3 (which contained the simplest set 
of diagrams among the three data sets). When diagrams are 
complex, GeoSolver needs to perform more computationally 
expensive calculations to detect primitives, which slows it 
down. Furthermore, we observed that FastGDP provided 

no additional time advantage for point detection over the 
advantage already provided for primitive detection. This is 
consistent with our hypothesis, since GeoSolver performs the 
most pixel-level calculations for primitive detection.

We also hypothesized that FastGDP will perform somewhat 
worse at primitive detection but comparably at point detection 
when compared to GeoSolver. However, the results were 
contrary to this hypothesis. We found that FastGDP offered 
comparable performance to GeoSolver on primitive detection, 
which did not agree with our prediction. However, FastGDP’s 
F1 score for point detection on the Dataset 3 was worse than 
that of GeoSolver, even though the combined performance 
on all datasets was not significantly worse. This suggests that 
the corner detection approach is not as robust as expected 
on unseen images, and some further work is necessary here.

If overfitting had taken place when FastGDP was being 
designed, we would have expected it to perform worse on 
Dataset 3 (containing unseen diagrams) than on the other two 
datasets. However, as FastGDP actually performed slightly 
better on Dataset 3 than on the other datasets for both primitive 
and point detection (perhaps due to the lower complexity of 
diagrams), we concluded that significant overfitting did not 
take place when FastGDP was being designed. However, 
GeoSolver did have a higher F1 score than FastGDP on point 
detection on Dataset 3 as it outperformed FastGDP in recall.

Another interesting observation was that, while FastGDP’s 
point detection F1 score was lower for Dataset 2 (containing 
complex diagrams) than for the other two datasets, it was 
lower to a smaller extent than the primitive detection F1 score. 
This may suggest that the corner information was helping to 

Figure 2: Distributions of F1 scores achieved by FastGDP and 
GeoSolver for primitive and point detection on all datasets taken 
together (n = 169). This figure shows histograms and associated 
KDE plots of the F1 scores achieved by (A) FastGDP on primitive 
detection, (B) GeoSolver on primitive detection, (C) FastGDP on 
point detection, and (D) GeoSolver on point detection.

Figure 3: Average time per diagram for Primitive Detection and Primitive + Point Detection for every combination of diagram 
parser, dataset, and task. This figure shows comparisons of the average time per diagram for both Primitive Detection and Primitive + Point 
Detection for FastGDP (blue) and GeoSolver (red) on (A) Dataset 1 (B) Dataset 2 and (C) Dataset 3. Each diagram parser was run on each 
diagram image 5 times for each task and the results of the 5 runs were averaged. p < .001 is shown as ***.
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compensate for lower primitive detection accuracy. 
A limitation of FastGDP is that a large number of spurious 

corner detections are produced along jagged edges if the 
image is of very low quality. This can happen especially 
when the lines and circles are heavily aliased or have very 
rough edges. It is possible that this could be fixed using 
preprocessing steps like blurring, but this would have to be 
performed without losing diagram detail. Additionally, an 
overly smoothed image might prevent actual corners in the 
diagram from being detected correctly. Another limitation is 
that, unlike Song, et al.’s method, FastGDP is not designed 
for parsing hand-drawn diagrams (9).

A limitation of our experiments is that two of the datasets 
on which we reported data were used when building FastGDP. 
However, this did not affect the speed results, as FastGDP 
was not optimized for speed in any way that depended on 
a particular dataset. In addition, we believed that reporting 
detection performance data from all three datasets was 
necessary since the three datasets we used differed in both 
source and complexity of diagrams. This means that the 
results on the third dataset alone were not representative of 
the results on all datasets. 

While FastGDP has shown promising results in our 
experiments, further work is necessary to make use of the 
advantages of FastGDP in an automated geometry problem 
solver. The corner detection is not as robust as initially 
expected, so more research is required to improve the corner 
detection. If the corner detection accuracy can be significantly 
improved, it might be possible for FastGDP to consistently 
outperform GeoSolver in point detection accuracy while still 
maintaining a speed advantage. A possible way to do this 
would be to use SMBO (sequential model-based optimization) 
techniques such as Bayesian Optimization or Tree of Parzen 
Estimators (TPE) to optimize the parameters of the corner 
detector (11).

We believe that the speed advantage offered by FastGDP 
would be particularly beneficial if FastGDP were to be used in 
the training loop of a larger geometry problem solving system. 
A significant speed advantage would offer greater flexibility in 
training a larger model and would also allow the parameters 
of FastGDP to be tuned simultaneously while training the 
larger model. None of the currently available geometry 
problem solvers that use GeoSolver to parse diagrams 
have attempted to tune GeoSolver’s parameters to improve 
detection accuracy for their specific use cases. Furthermore, 
a faster diagram parser will make it more feasible to run input 
images through the diagram parser in every training step 
instead of precomputing diagram features, which will enable 
image augmentation to be used in the training process.

In summary, the contributions of this paper to the 
field of geometry problem solving are two-fold: Firstly, we 
provide a diagram parser that is significantly faster than the 
currently available GeoSolver tool while offering comparable 
performance in most cases. Secondly, we present a novel 
approach for geometry diagram parsing that adds to the 

literature on the subject and helps inspire future research.

MATERIALS AND METHODS
Datasets

Dataset 1 contained the training data used by GeoSolver 
and consisted of 65 geometry diagrams. This dataset 
was compiled by Seo, et al. and consisted of high-school 
level geometry questions with corresponding geometry 
diagrams sourced from test-preparation websites such as 
RegentsPrepCenter, EdHelper, etc. (7). Dataset 2 was a new 
dataset containing 40 geometry diagrams that we created 
manually. It consisted of significantly more complex geometry 
diagrams than those in the first dataset (this dataset did not 
have associated geometry questions since FastGDP only 
deals with diagrams). Dataset 3 is the GeoSolver test data 
containing 64 official SAT® Geometry Questions. The images 
in this dataset had never been used while designing FastGDP. 
Dataset 3 contained the simplest geometry diagrams on 
average, and Dataset 2 contained the most complex ones 
(Figure 1).

For each dataset, we manually annotated the points and 
primitives using the Computer Vision Annotation Tool (CVAT) 
to provide the ground truth line, circle, and point data to 
compare the results of the algorithms with during testing (12).

Metrics and Evaluation
To test the accuracy of both FastGDP and GeoSolver, 

we ran each diagram parser on each diagram in the three 
datasets and then ran code that compared the detections for 
both primitives and points with the ground truth annotations 
to determine precision, recall, and F1 score. In doing this, 
we needed to determine which of the point and primitive 
detections produced by FastGDP or GeoSolver were correct 
(i.e, they matched up with a ground truth point or primitive). 
We did this as follows:

FastGDP uses the Hesse normal form to represent lines, 
which represents a line by two variables, rho and theta. For 
line detection, we considered a predicted line to match a 
ground truth line if the difference between the theta values 
of the two lines was less than 0.1 radians (5.73 degrees) and 
the difference between the in rho values was less than 5% of 
the average dimension of the image. For circle detection, we 
considered a predicted circle to match a ground truth circle if 
the IOU (Intersection over Union) was more than 0.8. For point 
detection, we considered a predicted point to match a ground 
truth point if the distance between the points was less than 
5% of the average dimension of the image. We chose these 
thresholds for point and line detection as geometry diagrams 
typically do not have two points or lines respectively that 
differ by less than the chosen thresholds, so that it would be 
unlikely for a wrongly detected point or line to be considered 
correctly detected. The threshold for circle detection was the 
same as the one used by Seo, et al. (7).

We then calculated precision and recall for each diagram 
parser for each task as follows:
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(1)

(2)

(3)

(4)

The F1 score for primitives was calculated using precision 
and recall for primitives, and the F1 score for points was 
calculated using precision and recall for points. In each case, 
we computed the F1 score as follows:

(5)

To generate the results for speed for some combination 
of diagram parser, task (primitive or point detection), and 
diagram, we ran the diagram parser on each diagram 
five times for that task, measured the time for each run 
(programmatically), and then averaged the five values to 
determine the average detection time. We repeated this 
process for every combination of diagram parser, task, and 
diagram.

We ran all experiments on a desktop computer having 
an Intel i7-7700k Central Processing Unit (CPU), integrated 
graphics, and 32 GB of RAM. 

Statistical Methods
	 When calculating a p-value for comparing the performance 
of FastGDP and GeoSolver on some combination of metric 
and dataset, we paired up the values achieved by FastGDP 
and GeoSolver on that metric. We then ran the one-sided 
paired t-test on the paired data using Google Sheets. For 
precision, recall, and F1, the alternate hypothesis was that 
GeoSolver’s performance was better (i.e. higher), while for 
average detection time, the alternate hypothesis was that 
FastGDP’s performance was better. (i.e. lower). We set the 
threshold for statistical significance at p < 0.05.

Diagram Parsing Pipeline
FastGDP was written in the Python programming language 

(version 3.6.4). FastGDP uses the OpenCV Python library for 
image processing (13).

When performing primitive or point detection on a 
diagram image, FastGDP first uses connected component 
analysis as a pre-processing step (as text labels usually 
tend to be separate connected components) to remove all 
text labels from the image to prevent them from interfering 
with the line, circle, and corner detection (Figure 4). To do 
this, the image is first binarized using Otsu’s method (14) . 
This method is used as it avoids having to set a hardcoded 
threshold for binarizing the image. Then, the connected 
components in the input image are determined using 
OpenCV’s connectedComponentsWithStats method, and the 
largest connected component is retained. All other connected 
components are replaced by white pixels. 

After the preprocessing step, FastGDP detects circles in 
the diagram image using the Circle Hough Transform (CHT), 

Figure 4: Summary of steps followed by FastGDP for point detection (primitive detection is an intermediate step) on a sample 
image. A) Input image. B) Result of text removal. C) Result of circle detection. D) Result of circle pixel removal. E) Result of line detection. F) 
Result of corner and intersection detection. G) Result of corner and intersection clustering. H) Result of cluster averaging and point filtering. 
Only steps B-E are used for primitive detection.
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a standard circle detection algorithm (Figure 4) (3). The 
CHT is sensitive to the choice of parameters, especially the 
accumulator threshold. This threshold is the minimum value 
required in the accumulator array cell corresponding to a 
particular circle for the circle to be considered a true positive. 
If this threshold is too low, many false positive circles are 
detected, and if it is too high, no circles are detected even if 
the image contains circles. So, FastGDP uses binary search 
(for efficiency reasons) to determine the highest value of 
the accumulator threshold in the range [0, 150] for which at 
least one circle is detected. If this value is less than or equal 
to 70, FastGDP discards the results of the circle detector, 
since a very low value suggests that the image contains no 
circles, and the detected circles are false positives. At this 
stage, there could still be some duplicate circle detections, so 
FastGDP clusters the centers of the circles using the DBSCAN 
clustering algorithm and averages the center coordinates and 
radii within each cluster (10). 

Next, FastGDP masks out all the circle pixels in the image 
using a disc-shaped mask for each circle (Figure 4). This 
reduces the chance of false positive lines being detected 
along circles. Next, unlike GeoSolver, which uses the 
Standard Hough Transform, FastGDP uses the Progressive 
Probabilistic Hough Transform (PPHT) to detect lines 
(Figure 4) (3). The PPHT generally produces more accurate 
line detections, which circumvents the necessity of a primitive 
selection algorithm. However, the PPHT does sometimes 
detect duplicate lines. To overcome this, the lines are first 
converted to Hesse normal form since line endpoint data is not 
required for the subsequent steps. In Hesse normal form, a 
line is represented by two variables: rho (which represents the 
length of the perpendicular drawn from the origin to the line) 
and theta (which is the angle the perpendicular makes with 
the positive x axis). This also means that the dimensionality 
of the line data is reduced from four to two. Then, DBSCAN 
clustering is used in the rho-theta space followed by intra-
cluster averaging. Since the rho-theta space is essentially in 
polar coordinates, the following metric is used instead of the 
standard Euclidean metric, where (ρ1, θ1) and (ρ2, θ2) are the 
rho-theta value pairs (in the Hesse normal form) for the first 
and second lines respectively and d(ρ1, θ1, ρ2, θ2) is the value 
of the metric:

(6)

where

(7)

(8)

And ℓmax is the maximum dimension of the image.

This metric is very similar to the one used by Liu, et al. 
(15).

At this stage, all primitives have been detected. While 
FastGDP does not need to detect line endpoints manually like 
GeoSolver, this can be done if necessary while incorporating 
FastGDP into a larger problem solver at minimal time 
overhead, since the final line detection usually does not 
contain more than 10 lines for most diagrams and usually 
contains 4-6 lines. In contrast, GeoSolver must detect 
endpoints of all over-generated lines. (By default, the number 
of over-generated lines is 40.)

Next, intersection points between primitives and corners 
are calculated (Figure 4). For detecting corners, the Harris 
corner detector, a standard corner detection algorithm, is 
used (16). The output of the Harris corner detector is also 
used for removing false positive corner detections. For this 
purpose, the corner response map is first dilated generously 
to prevent correctly detected intersection points from being 
filtered out. Then only those intersection points are retained 
which are in a corner region. 

The corners and intersection points are then clustered 
using the DBSCAN clustering algorithm (Figure 4). The 
DBSCAN algorithm is used here (and during line and circle 
detection) mainly because the number of clusters is not 
known beforehand. For each cluster, the coordinates of the 
intersection points within the cluster, if the cluster contains at 
least one intersection point, or the corner points, if the cluster 
contains no intersection points, are averaged to determine 
the single point associated with that cluster. For each point 
so detected, FastGDP determines which (if any) detected 
lines or circles the point lines on. Finally, only those points 
are retained which lie on at least one line or circle or are the 
center of a circle. For images containing at least one circle, 
only those points are retained for which the corresponding 
cluster contains at least one intersection point, that is, clusters 
containing only corners are not retained (Figure 4). This is 
because when circles are present in the image, the output of 
the Harris corner detector often contains many false positive 
corners around the circle. The points retained in the previous 
step are finally returned.

The source code for FastGDP with usage instructions 
can be found at bit.ly/FastGDPrepo. This GitHub repository 
also contains the three datasets mentioned in this paper with 
annotations for each dataset.
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