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of which share symptoms with PTSD (2). Additionally, about 
3.5% of people in the United States (U.S.) are diagnosed with 
PTSD annually, and 1 in 11 individuals will suffer from PTSD 
at some point in their life (3). Another study examined a group 
of U.S. veterans from wars in Iraq and Afghanistan. Forty 
percent of these veterans had PTSD (4). Eighteen percent 
had subthreshold PTSD, which means the individuals did not 
meet all Diagnostic and Statistical Manual of Mental Disorders, 
fourth edition (DSM-IV), PTSD diagnostic requirements but 
still exhibited several symptoms of the disorder (4). Due to 
numerous stigmas associated with mental health, only half of 
U.S. veterans receive needed treatment for PTSD (5).
 Researchers are actively searching for PTSD biomarkers 
to help better understand the biological underpinnings of 
the disorder. While there are studies that have focused on 
identifying biomarkers for PTSD, very few have analyzed 
a vast collection of datasets encompassing several omics 
levels such as metabolomics, proteomics, and genomics. 
In particular, the Department of Defense-funded Systems 
Biology of PTSD Consortium has collected clinical and 
molecular data from war veterans to develop a reproducible 
panel of blood-based biomarkers for PTSD (6). Using statistical 
tests and machine learning models, such as recursive feature 
elimination and support vector machine, the Consortium 
published a study in 2019 describing the isolation of 28 
biomarkers spanning all collected datasets. The Consortium 
used these biomarkers to predict the PTSD status of veterans 
in an independent validation cohort with 81% accuracy (6). 
The study justifies binary classification of PTSD patients 
using the DSM-IV Clinician Administered PTSD Scale (CAPS) 
score by separating patients with moderate to extreme PTSD 
conditions from patients with no symptoms (6). Specifically, 
minimum CAPS score cutoffs of 40 for PTSD-positive patients 
and maximum cutoffs of 20 for PTSD-negative patients 
were chosen to create the two groups (6). Furthermore, one 
study found that insulin resistance was a key biomarker that 
corresponded to the severity of PTSD symptoms (7). Another 
study used the DSM-5 criteria to identify severity of PTSD 
symptoms and separated individuals into cases and controls 
(8). They focused on identifying biomarkers at the genetic 
level and concluded that an allele of APOE2, associated with 
reexperiencing, can help distinguish PTSD patients from 
controls (8). The study also found that complement system 
genes may serve as PTSD biomarkers (8).
 In our study, we used the same datasets used by the 
Consortium (6). However, our analysis evaluated the ability 
of deep neural networks (DNNs) to accurately predict PTSD 
status based on individual clinical and molecular datasets. 
A neural network is a computational network of nodes 
(neurons) loosely modeled after the brain (9). The network 
weights are values assigned to edges between nodes of 
consecutive layers, which are multiplied by the values of 
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SUMMARY
Post-traumatic stress disorder (PTSD) is a 
neuropsychological disorder in which individuals 
struggle to recover from a traumatizing event. It 
affects a significant population, including COVID-19 
patients, frontline health workers, and war veterans. 
Given biases associated with self-assessment and 
diagnosis of PTSD, researchers are actively searching 
for unbiased biological markers (biomarkers) for 
predicting PTSD status. The Systems Biology of PTSD 
Consortium has collected candidate biomarkers for 
PTSD using molecular and clinical measurements of 
male war veterans between the ages of 20 and 60. PTSD-
positive and negative subjects were separated based 
on the fourth edition of the Diagnostic and Statistical 
Manual of Mental Disorders (DSM-IV) Clinician 
Administered PTSD Scale (CAPS) scores, derived 
from structured interviews to measure an individual’s 
abundance of symptoms, such as re-experiencing, 
flashbacks, and hyperarousal. CAPS scores higher 
than 40 were considered PTSD-positive and below 
20 were considered negative. We created artificial 
neural network models to classify PTSD-positive and 
negative individuals based on metabolomics, micro-
RNA (miRNA), protein expression, endocrine markers, 
and DNA methylation datasets. Model training 
involved 64 iterations of a Bayesian Hyperparameter 
Optimization algorithm with 5-fold cross-validation. 
Each model was calibrated based on cross-validation 
performance and variance across iterations and then 
fit to the entire respective dataset (76 PTSD-positive, 
76 PTSD-negative). We applied the trained models to 
an independent validation cohort to assess accuracy 
on unseen datasets. The top performing datasets 
from the validation cohort based on classification 
accuracy were metabolomics (65.2%) and protein 
expression (61.8%). We anticipate the candidate 
biomarkers identified in this and future studies will 
assist with the diagnosis of PTSD.

INTRODUCTION
 Post-traumatic stress disorder (PTSD) is a disorder 
characterized by the difficulties people encounter when 
recovering from a trauma (1). PTSD is a widespread condition, 
affecting many people including war veterans and COVID-19 
patients. For example, one study examined 381 patients 
with SARS-CoV-2 and found that 30.2% of them suffered 
from PTSD (2). These patients were also diagnosed with 
depressive episodes and generalized anxiety disorder, both 
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the nodes from the incoming layer (9). To get the value of 
each node in the network, the model evaluates an activation 
function applied to the sum of all the nodes’ inputs multiplied 
by their corresponding weights (9). The resulting value 
determines the impact this node will have on values of nodes 
in subsequent layers (9). Nodes in the first layer of a neural 
network simply take on the values of the training data for a 
given dataset (9). Each network may have varying numbers 
of layers, and the final layer has a single node, which in 
our study represents the binary output of PTSD-positive or 
negative (9). In the process of training, the model quantifies 
error by calculating the difference between the true output 
(case/control status) and the output of the neural network 
(9). The neural network then modifies its weights to reduce 
error and repeats this process many times (Figure 1) (9). A 
neural network functions by finding the optimal combination 
of features that can accurately predict the output variable, 
and if a feature is not statistically significant between the two 
categories of patients, it is unlikely to positively contribute to 
the neural network. Including features without significance 
may negatively impact the neural network by creating noise, 
as the values of the feature do not substantially differ between 
PTSD-positive and negative patients.
 One study compared deep neural networks to standard 
machine learning models, including support vector machines 
and logistic regression, and found that DNNs tended to 
perform classification with higher accuracy and were more 
effective in utilizing large amounts of training data (10). 
Another study examined the binary classification accuracy for 
drugs and non-drugs and found that support vector machines 
and artificial neural networks had comparable performance at 
82% and 80% accuracy, respectively (11). There are various 
applications of deep learning, such as natural language 
processing, speech recognition, and bioinformatics, all 
of which aim to train a model on a large quantity of input 
data to make predictions about an occurrence (12). Along 
with some inconsistencies in the literature regarding the 
classification power of neural networks, their use is not as 
clearly documented as other machine learning techniques 
in the context of biological conditions. Thus, we used neural 
networks in this study to further investigate their classification 
performance and contribute findings to the goal of accurately 
diagnosing PTSD. We hypothesized that a neural network 
would improve classification accuracy of an unseen cohort 
of PTSD war veterans. Our model used the metabolomics 
dataset to predict PTSD at roughly 65.2% accuracy, nearing 
the highest accuracy in the field when individual datasets are 
used. A DNN can aid with PTSD diagnosis, as it is based 
on the levels of biological markers and thus, not subject to 
stigmas surrounding mental health.

RESULTS
Model Performance
 We performed two phases of testing with two independent 
cohorts to evaluate the performance of neural networks 
on an unseen cohort of PTSD veterans: Original Testing 
involved training and testing on the Original Biomarkers 
cohort, and Validation Testing involved training on Original 
Biomarkers and testing on Validation Biomarkers. For 
Original Testing and Validation Testing, the test accuracy for 
classifying PTSD cases and controls was generally lower 
than the cross-validation accuracy, which was the average 

training accuracy. Additionally, results of Original Testing 
showed higher sensitivities, the percentage of true positives, 
than Validation Testing, except for Endocrine Blood, which 
showed a sensitivity of 0. In contrast, the specificities, the 
percentage of true negatives, of both Original Testing and 
Validation Testing showed no consistent differences, with 
some datasets showing specificities close to 1 and others 
close to 0. In terms of individual datasets, Methylation Zymo-
Probe, miRNA Deplete, and miRNA Exosome datasets had 
consistent sensitivities for binary PTSD classification, while 
the Methylation Zymo-Gene and Methylation Zymo-Probe 
datasets had consistent specificities across both testing 
methods. We did not find any statistically significant features 
based on the one-way ANOVA test in the Endocrine Blood and 
Metabolomics Metabolon datasets. Thus, we excluded them 
from subsequent testing because the features were unlikely to 
classify PTSD effectively if they were not statistically significant 
between PTSD cases and controls. The Metabolomics UCSF 
dataset had the highest test accuracy (65.2%) in Validation 
Testing, while Protein ELISA and Protein SRM had similar 
performances (61.8%). In comparison, the miRNA datasets, 
miRNA Deplete (47.1%), miRNA Exosome (50%), and miRNA 
Plasma (58.8%) had lower PTSD classification accuracies. 
Finally, the methylation datasets performed similarly, with 
Methylation Zymo-Gene classifying PTSD cases and controls 
at 56.7% and Methylation Zymo-Probe classifying at 55.2% 
(Table 1).

Feature Importance
 We observed that most datasets had between 2–11 
important features selected for prediction of PTSD on the 
Validation Biomarkers data. However, all three miRNA 
datasets (Deplete, Exosome, Plasma) used up to 20 features to 
predict PTSD status in the Validation Biomarkers data (Table 
2). Some datasets that required fewer features for PTSD 
prediction showed a clear importance of one or two features, 
whereas the feature importance for the miRNA datasets were 

Figure 1: Sample neural network diagram with one internal 
layer. The input layer represents the data from a single dataset. The 
arrows represent the weights in the network, with each arrow having 
a different weight that connects one node to another node in the 
next layer. The output layer represents the final value of the network, 
which is used to calculate the error by finding the difference between 
this value and the true output.
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more evenly distributed (Figure 2-3). The Endocrine Blood 
dataset was narrowed down from 13 features to 2, and the 
Metabolomics dataset from over 30 biomarkers to 6. Similarly, 
the protein datasets, ELISA and SRM, respectively went from 
8 to 3 and 85 to 5 biomarkers in Validation Testing. Specifically, 
Neuropeptide Y (88%) in Endocrine Blood; insulin (45%) and 
c45_l_3p8p (38%) in Metabolomics UCSF; MDCI (43%) and 
APOE (24%) in Methylation Zymo-Gene; Complement Factor 
H (CFH, 55%) in the Protein enzyme-linked immunosorbent 
assay (ELISA) dataset; and C4BPB (46%) and ACTC1 (40%) 
in the Protein selected reaction monitoring (SRM) dataset 
accounted for the majority of relative feature importance 
in each testing dataset (Table 3). In the miRNA datasets, 
no feature accounted for more than 10% of the relative 
importance when predicting PTSD. We determined the 
log-fold change of PTSD biomarkers by calculating the 
difference in concentration between the Original Biomarkers 
and Validation Biomarkers cohort, relative to the feature’s 
average concentration in Original Biomarkers. The average 
log-fold change of CFH between PTSD cases and controls is 

0.366 in the Original Biomarkers and 0.208 in the Validation 
Biomarkers cohorts, which means people with PTSD have 
slightly higher concentrations of CFH on average. In contrast, 
the average log-fold change of C4BPB is -0.245 in Original 
Biomarkers and -0.092 in Validation Biomarkers, indicating 
that PTSD cases have slightly lower concentrations of C4BPB 
on average. Finally, we identified the candidate biomarker 
hsa-miR-192-5p from the miRNA Plasma dataset, which is 
known to target NUAK1 (6, 13). The average log-fold change 
of hsa-miR-192-5p is -0.046 in Original Biomarkers and 
-0.018 in Validation Biomarkers, indicating that PTSD cases 
have slightly lower levels of this miRNA on average.
 We began our analysis with approximately 1,300 molecular 
features collected across all the datasets. After removing 
statistically insignificant features for each dataset using the 
one-way ANOVA test, our neural network models further 
reduced the number of features in each dataset to predict 
PTSD status as accurately as possible. Large datasets, such 
as miRNA Deplete, miRNA Exosome, and miRNA Plasma, 
showed a significant feature reduction of 94–96% of the 

Table 2: Original vs. selected features. The number of original features as well as the number of selected features in Original Testing and 
Validation Testing are listed for each subdataset.

Table 1: Neural network classification performance summary for Original and Validation Testing. Original Testing and Validation 
Testing cross-validation (CV) accuracy, test accuracy, sensitivity, and specificity are listed for each subdataset.
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original count. In contrast, small datasets like Methylation 
Zymo-Gene, Methylation Zymo-Probe, and Protein ELISA 
showed a smaller percentage reduction of features at 
approximately 32-55% of the original feature count.

DISCUSSION
 As expected, the observed test accuracy was generally 
lower than the cross-validation accuracy because the model 
was evaluated on unseen data during testing. Additionally, 
most of the test accuracies in Validation Testing were lower 
compared to those of Original Testing because the model was 
tested on the Validation Biomarkers cohort, which consists 
of an entirely separate group of veterans compared to the 
Original Biomarkers cohort. Compared to the Consortium, 
which used the same datasets to predict PTSD status in the 
Validation Biomarkers cohort at approximately 81% accuracy, 
our neural networks did not perform as well, with the highest 
observed classification performance for the validation cohort 
at 65.2% accuracy using the Metabolomics UCSF dataset 
(6). This is not unexpected, as our study considered each 

dataset individually, whereas the Consortium combined 
features across all the datasets to predict PTSD status, 
giving such a model higher predictive power (6). However, 
when comparing the performance of the individual datasets 
in the Consortium, our performance was comparable (6). For 
example, our miRNA Plasma dataset performed at 58.8% 
accuracy, whereas the Consortium achieved roughly 50% 
accuracy with all miRNA datasets combined (6). Additionally, 
both the Protein ELISA and Protein SRM datasets in our 
study performed at 61.8% accuracy, while the Consortium 
showed lower than 60% accuracy even when the researchers 
combined both protein datasets (6). Methylation datasets in 
both studies performed similarly, achieving approximately 
55% accuracy (6).
 The endocrine data measure the concentration of various 
hormones in the blood and urine. The metabolomics data 
measure substances used in metabolism, which is the 
collection of all chemical processes that convert organic 
material into energy (14). ELISA Neuropeptide Y (NPY) holds 
the highest rank in terms of relative importance at 88% in 
the Endocrine Blood dataset. NPY is a peptide made of 36 
amino acids and is frequently involved in stress regulation 
(15, 16). One study found an abnormal level of NPY in a 
rat depression model, while another found an association 
between NPY and stress and anxiety levels, which is notable 
because depression, anxiety, and stress are all symptoms of 
PTSD (16, 17). This prior research corroborates our results, 
suggesting that NPY can be used as a biomarker to predict 
PTSD status.
 Insulin had the highest importance in the Metabolomics 
UCSF dataset. The primary function of insulin is to allow 
cells to absorb glucose, or sugar, from the bloodstream (18). 
Several studies that searched for biomarkers for PTSD found 
that insulin resistance was greater in individuals with PTSD 
compared to controls (6, 7). One study found that, along 
with insulin resistance, PTSD patients had higher levels of 
blood glucose (19). While this finding does not indicate insulin 
causes PTSD or results from PTSD, as there may be a third 
variable involved that affects both the presence of PTSD and 
insulin levels, insulin can be used as a correlation factor to 
distinguish PTSD cases from controls. Finally, elevated blood 
sugar frequently causes obesity, depression, and anxiety, all 
of which are frequently associated with PTSD (20). These 
findings support our results suggesting that insulin levels (and 
insulin resistance) are good indicators of PTSD presence and 
severity.
 The Protein enzyme-linked immunosorbent assay (ELISA) 
and selected reaction monitoring (SRM) data measure protein 

Table 3: Top 7 most important features for Validation Testing. 
Validation Testing is the process of training using five-fold cross-
validation on the Original Biomarkers cohort and testing on the 
Validation Biomarkers cohort. Relative % represents the importance 
of each feature relative to its own dataset.

Figure 2: Endocrine Blood feature importance distribution. The 
pie chart shows the relative contribution of the selected features. The 
dataset had 13 total features.

Figure 3: Protein SRM feature importance distribution. The pie 
chart shows the relative contribution of the selected features. The 
dataset had 85 total features in the neural network.
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concentrations. Complement Factor H (CFH) is the highest-
ranking feature from the Protein ELISA dataset with a relative 
importance of 55%. CFH is a component of the human immune 
system ensuring that the complement system is activated when 
foreign organisms, such as viruses and bacteria, are detected 
(21). One study measured the distributions in genotype and 
allele frequencies of various complement factors, including 
CFH, in PTSD cases and control patients (8). However, they 
did not find a statistically significant difference in CFH in any 
genotype or allele frequencies between the two groups (8).
 At 46%, C4BPB had the highest relative importance for 
predicting PTSD status in the Protein SRM dataset. While 
previous studies have not found a significant role for C4BPB 
in response to trauma, the known function of this gene 
involves immunity and negative regulation of the complement 
system (22). Considering previous studies described a 
relationship between PTSD and the activation of complement 
genes, our identification of C4BPB further implicates the 
role of the complement system in the PTSD phenotype (8). 
The directional change of C4BPB is opposite that of CFH, 
which makes sense given that CFH activates the complement 
system, while C4BPB inhibits it. Specifically, C4BPB levels are 
lower in PTSD cases compared to controls, while CFH levels 
are higher because the complement system is activated.
 The miRNA data measure levels of micro-RNA, a type of 
non-coding RNA that is transcribed from DNA and primarily 
works to regulate gene expression (23). The miRNA Plasma 
data consist of miRNAs isolated from blood plasma. The 
miRNA Exosome data represent plasma miRNAs found within 
exosomes, which are vesicles that carry different substances 
around the cell, while miRNA Deplete data contain the 
miRNAs remaining after depleting plasma of the exosomes 
(24). In the miRNA datasets, our models consistently selected 
20 features for classification, and thus each feature had lower 
relative importance than the features in the Endocrine and 
Protein datasets. We identified many biomarkers in these 
datasets that overlapped those found by the Consortium (6). 
Given that most miRNAs inhibit expression of their targets, 
we would expect the levels of NUAK1 to increase in PTSD 
subjects when hsa-miR-192-5p decreased. One study 
investigated NUAK1 for PTSD patients and found a positive 
log-fold change for this gene, indicating that NUAK1 was 
expressed at higher levels in PTSD cases than controls (13).
 We did not calculate the feature importance distributions 
for Original Testing, as we preferred to focus on biomarkers 
that can effectively predict PTSD status in an independent 
cohort of veterans. At the transcriptomic level, we found 
over 60 biomarkers in the miRNA datasets that contributed 
relatively equally to binary classification of PTSD. However, 
we observed a different pattern for biomarkers from protein, 
metabolomics, and endocrine datasets, which had a few 
features with disproportionately high contributions to the 
neural network’s PTSD classification.
 Overall, the number of markers selected indicates that a 
relatively large number of biomarkers have high importance 
in binary classification at the transcriptomic level, while 
there are significantly fewer from other categories. The 
methylation data measure the levels of DNA methylation 
throughout the genome, which collectively provide an 
epigenetic mechanism for controlling gene expression (25). 
In our study, transcriptomic biomarkers were miRNA and 
methylation, which had several more variables compared to 

other datasets like endocrine or protein expression, and thus 
were likely to have more unique combinations of genes that 
were expressed, allowing for improved PTSD classification.
 There are some limitations of our study, particularly 
concerning the applicability of the results to other populations. 
The Consortium collected clinical and molecular data from 
male war veterans, meaning our results are unlikely to 
generalize well to women and individuals with non-combat-
related trauma (6). In addition, the Original Biomarkers and 
Validation Biomarkers cohorts had 165 and 67 samples, 
respectively. A larger cohort would have been preferred to 
give the neural network more training data, possibly allowing 
to classify PTSD on an unseen cohort more effectively. Finally, 
we evaluated the neural network classification performance 
on individual datasets. However, our methods cannot take 
into consideration that there may be dependencies between 
potential biomarkers across different datasets. Thus, an 
integrative algorithm that encompasses information from all 
the datasets, such as Integrative Network Fusion (INF) (26), 
could be useful. The INF algorithm has been tested as a multi-
omics method on cancer genome datasets and could provide 
a better PTSD prediction model by simultaneously using data 
from multiple datasets (26).
 This study allowed us to down-select from over 1,300 
clinical and molecular features from war veterans to 
approximately 100 biomarkers that were most predictive for 
PTSD status. In many of our analyzed datasets, we identified 
a small number of features having disproportionately 
high importance for classification. Our results support the 
understanding that complex neurological diseases including 
psychiatric disorders are influenced by multiple biological 
factors. Thus, we would expect a combination of features 
to be necessary to predict PTSD status with the highest 
accuracy. We anticipate that our deep learning approach and 
the candidate biomarkers identified in this study will be useful 
for assisting medical practitioners with the diagnosis of PTSD 
in the future.

MATERIALS AND METHODS
Datasets
 We analyzed two cohorts of the Systems Biology of 
PTSD Consortium’s molecular and clinical measurements 
of male veterans between the ages 20–60 years (6). 
Researchers collected measurements for each dataset 
from two independent cohorts of male war veterans from 
Operation Iraqi Freedom or Operation Enduring Freedom: the 
“Original Biomarkers” cohort, consisting of 165 samples, and 
the “Validation Biomarkers” cohort, consisting of 67 samples 
(6). The Consortium classified the subjects in each cohort 
as PTSD-positive or negative based on their DSM-IV CAPS 
scores, derived from a structured interview to measure a 
patient’s abundance of symptoms, such as re-experiencing, 
flashbacks, and hyperarousal (6). Researchers marked 
individuals with CAPS scores >40 as PTSD-positive (“cases”) 
and <20 as PTSD-negative (“controls”) (6).
 The collected datasets for both cohorts include Endocrine 
Blood, Endocrine Urine, Metabolomics Metabolon, 
Metabolomics UCSF, Methylation Zymo-Gene, Methylation 
Zymo-Probe, miRNA Deplete, miRNA Exosome, miRNA 
Plasma, Protein ELISA, and Protein SRM (6). The Metabolon 
Corporation collected the Metabolomics Metabolon data, and 
researchers at the University of California, San Francisco 
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collected the Metabolomics UCSF data. For each dataset 
from both cohorts, we applied the Python Standard scaler to 
preprocess features to a mean of 0 and variance of 1. We also 
shuffled each dataset before training and testing models to 
avoid any predisposed biases in the ordering of samples.

Original Testing
 To begin, we randomly split each dataset from the Original 
Biomarkers cohort into a training and testing set, 70% and 
30%, respectively. Using an R program to conduct a one-
way ANOVA test to identify statistically significant differences 
between the means of cases and controls in the training set, 
we removed features from each dataset whose p-values were 
> 0.05. We then trained classification models for each dataset 
on the training set data and evaluated on the testing set data.

Validation Testing
 To understand the ability of our models to classify data 
from an independent cohort, we also used each of the 
entire Original Biomarkers datasets as training sets and the 
Validation Biomarkers datasets as test sets. As above, we 
wrote an R program to conduct a one-way ANOVA test on 
each training dataset and removed features with p-values > 
0.05 before performing classifier training and testing.

Artificial Neural Network
 We trained each model using 64 iterations of a 5-fold 
cross-validation procedure on the training set before 
evaluating on the test set. Cross-validation provides an 
estimate of the performance of a machine learning model 
on a training dataset. To perform a 5-fold cross-validation, 
we divided each training dataset into 5 folds (sections) and 
trained 5 different classifiers, each using a unique set of 4 
folds for training and the remaining fold for validation (27). 
We determined the performance of each iteration of cross-
validation by averaging the performances of all 5 validation 
folds of the training set (27). Importantly, the models used 
for both Original Testing and Validation Testing were not 
given the testing data before the final evaluation. We used 
the Adaptive Movement Estimation Optimizer and Binary 
Cross-Entropy Loss functions to train the model. Additionally, 
we used three types of activation functions: swish, ReLu, and 
sigmoid (Table 4) (28, 29). To build and apply the network, 
we used the Python (3.7.3) programming language with the 
packages NumPy (1.18.5), Pandas (1.1.0), Keras (2.4.3), 
scikit-learn (0.23.2), scikit-optimize (0.8.1), and Google 
Tensorflow (2.3.0) (30).
 We used the Bayesian Hyperparameter Optimization 
algorithm to modify the weights and select optimal model 
hyperparameters, which are pre-determined characteristics 
of a neural network model. The algorithm was used to test 
various combinations of hyperparameters, including the 
number of internal layers and learning rate of the neural 
network, to identify the combination that predicted PTSD at 
the highest accuracy. We optimized the number of internal 
layers in the network (between 1 and 3) and the nodes per 
layer factor (between 0.1 and 1.0), which is the proportion of 
total nodes used in each internal layer. We also optimized the 
dropout rate (between 0.15 and 0.50), which determines the 
probability that a node is used in training, as some nodes are 
excluded to avoid overfitting the model to the training data (31). 
We used ReLu or swish for the internal activation functions 

and sigmoid for the final activation function. The number of 
epochs (between 25 and 100) and mini-batch size (between 
16 and 64) were optimized as well. Finally, we optimized the 
learning rate (between 0.001 and 0.100) that determines the 
fraction of the weights to modify during training (32).

Feature Importance
 To select only the most important features, we designed the 
artificial neural network to include a maximum of 20 features 
to classify PTSD status. To calculate feature importance, we 
first selected the final model with the best performance on the 
Validation Biomarkers dataset. Then, we randomized each 
selected feature (features that were statistically significant at 
a p-value cutoff of 0.05 on the Original Biomarkers dataset) 
and calculated the difference in accuracy on the Validation 
set when the model included the current feature versus when 
it did not. We selected the top 20 features that produced the 
highest deviation from the initial accuracy and calculated the 
relative deviations to produce feature importance for each 
variable.
 Each iteration of Bayesian Hyperparameter Optimization 
produced a different model, and we applied only those models 
whose cross-validation accuracies had a variance of <0.01 
to the testing data. To avoid model overfitting, we discarded 
each model with the highest training accuracy after satisfying 
the variance condition. We thus selected models for testing 
with training accuracies of approximately 90% of the highest 
observed (Table 5).
 We measured cross-validation accuracy, test accuracy, 
sensitivity, and specificity to assess our model’s classification 
performance. Cross-validation accuracy is the average 
proportion of PTSD cases classified correctly in Original 
Testing, while test accuracy is the proportion of PTSD cases 
classified correctly in Validation Testing. These metrics 
are based on using the true positive (TP), true negative 
(TN), false positive (FP), and false negative (FN) counts for 

Table 4: Equations and graphs for the swish, ReLu, and sigmoid 
activation functions. Based on the value of a single input node 
in the neural network, the equations determine the new value that 
will be passed on to the subsequent layer of the network, which 
represents the sum of the outputs of multiple input nodes.
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each dataset. Accuracy is the fraction of samples identified 
correctly as PTSD-positive or negative. Sensitivity is the 
fraction of samples correctly identified as PTSD-positive, 
given that the patient tested positive (33). Specificity is the 
fraction of samples correctly identified as PTSD-negative, 
given that the patient tested negative (33).
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