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asthma associations have been studied via population-based 
and biochemical analyses, and they offer tremendous oppor-
tunity in personalized disease prediction. 
	 Genome-wide prediction studies (GWPS) estimate an in-
dividual’s susceptibility to a disease based on their SNP com-
position. Feature selection reduces the high-dimensionality 
of GWAS data by selecting the most prominent vector-based 
SNP-disease associations prior to training machine learning 
models (4-6). While GWAS and GWPS reveal SNP-asthma 
and SNP-SNP associations, they are often time-consuming 
since they require individual whole-genome sequencing. 
Pooling DNA samples across populations into microarrays 
before sequencing circumvents these issues. Since ge-
netic variation often causes differing minor allele frequen-
cies (MAF) for SNPs across populations, pooled sampling 
identifies population-based SNP-disease associations and 
screens for falsely correlated loci within large databases (7-
9). Similarly, analyzing MAF distributions, SNP phenotypes, 
and other population-specific data within case and control 
groups characterizes the biological impacts of novel SNP loci 
(10). Moreover, explorations of allelic interactions have signifi-
cantly increased the number of potential asthma-linked loci. 
Such studies have developed models to detect epistatic inter-
actions for asthma-associated loci, classify mutation types, 
and discern functional applications of various loci (11-13).
	 While SNPs offer insights into the genetic causes of asth-
ma, they alone do not explain its mechanisms nor do they 
provide a framework to predict the disease risk of novel se-
quences. As more potentially asthma-associated SNPs are 
discovered, especially outside coding regions (14), verifying 
their disease associations and functions becomes increas-
ingly difficult due to high false positive rates, low replicability, 
and low generalizability (3). To investigate the following three 
hypotheses, we developed a model named DNA Sequence 
Embedding Network (DNA-SEnet):
	 Hypothesis 1. DNA-asthma associations can be revealed 
through semantic similarities and distributional representa-
tions of genomic sequences centered around previously iden-
tified SNPs.
	 Hypothesis 2. DNA-SEnet can identify novel asthma-
associated SNPs based on learned semantic features.
	 Hypothesis 3. DNA-SEnet can be generalized to predict 
SNP-disease associations for other complex traits including 
coronary heart disease, type 2 diabetes mellitus, and rheu-
matoid arthritis.
	 DNA-SEnet analyzed high-dimensional features of se-
mantic patterns across GWAS loci to discern DNA-asthma 
associations. On average, the model significantly outper-
formed classical machine learning methods in both predictive 
robustness and computation time when learning and clas-

DNA-SEnet: A convolutional neural network for 
classifying DNA-asthma associations

SUMMARY
Asthma is a complex disease with a growing global 
prevalence whose genetic causes remain largely 
unexplored. The rise of next-generation sequencing 
has significantly augmented genetic studies in 
identifying asthma-associated mutations, the most 
common of which are single nucleotide polymorphisms 
(SNPs). Population-based and biochemical analyses 
have been used to identify novel disease-associated 
loci and their biological consequences; however, 
SNPs alone do not explain the mechanisms of asthma 
nor do they offer a context to evaluate candidate 
SNP-asthma associations. To this end, we developed 
a model named DNA Sequence Embedding Network 
(DNA-SEnet) to classify DNA-asthma associations 
using their genomic patterns. The hypotheses of 
this study are that DNA-asthma associations can 
be discerned through high-dimensional vector 
representations of DNA sequences around SNPs, 
that these features can be applied to determine novel 
SNP-asthma associations, and that this model can be 
generalized to predict SNP-disease associations for 
other complex traits. On average, this model achieved 
an Area Under the Curve (AUC) equaling 0.81 when 
learning and classifying DNA-asthma associations. 
Additionally, DNA-SEnet corroborated previous 
studies’ SNP-asthma connections and proposed two 
novel asthma-linked loci based on their surrounding 
semantic properties. Moreover, DNA-SEnet effectively 
learned DNA-disease associations when applied to 
sequence data regarding coronary heart disease, 
type 2 diabetes mellitus, and rheumatoid arthritis. 
Therefore, this model can be used to identify novel 
disease-associated sequences across various 
disease types.

INTRODUCTION
	 Asthma is a complex polygenic disease with several sub-
types and is influenced by largely unexplored hereditary and 
environmental factors, often making it  difficult to diagnose. 
By 2025, nearly 400 million people globally will have asthma 
(1, 2). Advancements in high-throughput sequencing have 
unveiled several mutations associated with asthma primar-
ily through genome-wide association studies (GWAS), which 
analyze the distribution of genomic variants across cases and 
control groups for a specified phenotype (3). These variants 
are mostly single nucleotide polymorphisms (SNPs), genetic 
mutations occurring at singular loci across a genome. SNP-
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sifying existing SNP-asthma associations. Additionally, the 
model corroborated the findings of a population-based study 
whose purpose was to implicate particular SNP-gene pairs 
linked with asthma. Moreover, DNA-SEnet proposed two 
novel asthma-associated loci, indicating that the model can 
effectively apply learned semantic features when determining 
potential DNA-asthma connections. Finally, DNA-SEnet per-
formed consistently well when applied to SNP data from other 
complex traits, thereby demonstrating the model’s generaliz-
ability across various disease types.

RESULTS 
Hyperparameters
	 This research consists of model-related and data-related 
hyperparameters. Model-related hyperparameters entail the 
various combinations of settings in DNA-SEnet and the con-
trol model used for performance comparison. We employed 
random grid search to test five percent of all possible hyper-
parameter combinations and optimize DNA-SEnet with lower 
computational cost. The settings which minimized the loss 
value on the testing set were considered as the optimal hy-
perparameters. If more than one combination achieved the 
same minimum loss value, the combination which maximized 
the Area Under the Curve (AUC) value, which measured pre-
dictive robustness and classification accuracy, for the testing 
set was selected as optimal. All hyperparameters explored in 
DNA-SEnet were recorded (Table 1). 
	 This study designed a series of Support Vector Machines 
and selected the one with the highest predictive accuracy as 
the control model. The most important hyperparameter for 
SVMs   is the kernel, which transforms linearly inseparable 
input data into linearly separable cases in higher dimensions. 
Models for each kernel were individually designed and tuned. 
The Radial Basis Function  (RBF) kernel achieved the high-
est AUC score on the testing dataset. Therefore, the Support 
Vector Machine with Radial Basis Function kernel (SVM_
RBF) was used as a baseline for this experiment. All hyper-
parameter combinations explored across the SVMs were 
documented (Table 2). 
	 Word embeddings are growing increasingly popular in 
natural language processing; however, their effect on predict-
ing DNA-disease associations remains largely unexplored. 
Specifically, the influence of k-mer length k (the number of 
nucleotides in a DNA fragment), stride window s (the number 
of nucleotides between the end of one k-mer and the begin-
ning of the next), sequence length L (the total number of nu-

cleotides in the sequence), and embedding dimension b (the 
length of the vectorized k-mer features) on the performance 
of DNA-SEnet are unknown. Therefore, these settings were 
treated as data-related hyperparameters and are discussed 
below.

DNA-SEnet Performance Evaluation
	 All SNPs used in this study had confirmed asthma asso-
ciations from the GWAS Catalog, which provides diseases 
associations for experimentally identified SNPs (15). Here, 
we explored the genomic sequence-based similarities sur-
rounding these variants to better predict the occurrence of 
novel SNP-asthma associations using DNA-SEnet. We dem-
onstrate the performance of DNA-SEnet and compare it to 
SVM_RBF as a baseline through a series of hyperparameter 
experiments. The distribution of AUC scores for each model 
and average computational time in seconds were document-
ed (Table 3). Significant AUC values typically range from [0.5, 
1], where values tending toward 0.5 indicate random asso-
ciation and values closer to 1 indicate greater model perfor-
mance. On average, DNA-SEnet significantly outperformed 
SVM_RBF in classifying DNA-asthma associations and re-
quired less training time. The incorporation of deep learning 
in DNA-SEnet allows it to dynamically learn abstract features 
by adjusting more weights compared to classical machine 
learning methods while maintaining a fixed architecture. 
SVMs, however, attempt to separate data by constructing a 
decision boundary using input features. Increasing the num-
ber of features and samples requires longer training times. 
Moreover, since SVMs attempt to maximize the distance be-
tween its data points and decision boundary, they become 
less generalizable as they require more data points to catego-
rize samples. Thus, this comparison demonstrates the supe-
riority of DNA-SEnet to classical machine learning methods 
in both robustness of prediction and computational time when 
discerning sequence-based DNA-asthma associations.

Table 1: DNA-SEnet Hyperparameters. All hyperparameters 
explored in tuning DNA-SEnet using random grid search. Settings 
that minimized the loss value on the testing set were considered 
optimal (bolded).

Table 3: AUC distributions and training times of DNA-SEnet and 
SVM_RBF. This table compares the AUC values collected from both 
models during various hyperparameter experiments. Additionally, 
the training time of each model was recorded during each experiment 
using Google Colab.

Table 2: SVM_RBF Hyperparameters. All hyperparameters 
explored in SVM creation. Hyperparameters for each kernel 
were tuned individually. Since Radial Basis Function (RBF) kernel 
maximized the AUC on the testing set, the model using this kernel 
(named SVM_RBF) was selected as the control model for this 
experiment. Optimal hyperparameters in SVM_RBF are bolded.
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Sensitivity Analysis
	 We conducted a sensitivity analysis to study the effect 
of k-mer length k, stride window s, sequence length L, and 
embedding dimension b on model performance. Increasing 
k would tremendously increase the size of the k-mer vocabu-
lary, but too large of a k value would not capture short-range 
semantic patterns among DNA sequences. Moreover, too 
small k values would not generate distinguishable sequence 
embeddings when summed. We reconstructed the k-mer cor-
pus for k ranging from five to seven and obtained the cor-
responding embeddings by retraining the word embedding 
Global Vectors (GloVe) model (16). We found that DNA-SEnet 
performed slightly better with higher k (Figure 1A).
	 Equation 1 shows the number of possible k-mers N calcu-
lated using genomic sequence length L, k-mer length k, and 
stride window s (16).

(1)
	

	 We found higher s was associated with higher AUC from 
DNA-SEnet (Figure 1B). Equation 1 shows that the size of 
the k-mer corpus is inversely proportional to the stride win-
dow. Too large s could yield a lack of useful information as 
potential DNA fragments may be skipped over, which may 
negatively impact the k-mer embeddings. To avoid this, we 
limited the stride window from two to four, ensuring that s < k 
so all sequence components were accounted for. We did not 
explore s = 1 because it yields highly similar k-mers with a 
larger corpus (16), which could inflate the quality of the em-
bedding representations.
	 Next, we examined the effect of varying sequence length 
L. We constrained L values to 51, 101, and 151 nucleotides to 
ensure symmetric, localized sequences around the risk allele. 
Equation 1 shows that the size of the k-mer corpus is directly 
proportional to L. The increase in the number of unique k-
mers could also improve the quality of the k-mer vectors. We 
observed that DNA-SEnet achieves relatively consistent AUC 
measurements the aforementioned DNA sequence lengths 
(Figure 1C). For this model, while larger L improve the qual-
ity of the k-mer vectors, important vector-based DNA-asthma 
features become lost as more semantic information is includ-
ed in the overall embeddings.
	 The final data-related hyperparameter is the embedding 
dimension b. We restricted b values to 25, 50, and 75 due 
to computational constraints. Larger embedding dimensions 
increase the GloVe model complexity by introducing more 
weights. DNA-SEnet reflects this improved performance with 
an upward trend of its AUC value (Figure 1D). Moreover, 
since GloVe is an unsupervised algorithm, the quality of the 
emergent embeddings is measured using a loss value. We 
observed that the GloVe loss value decreased as the embed-
ding dimension increased (Figure 2), indicating better k-mer 
embeddings with higher b. If b becomes too large, however, 
both DNA-SEnet and GloVe become prone to overfitting.

Novel DNA-Asthma Associations
	 To test how DNA-SEnet classifies novel SNP-asthma as-
sociations, we applied the model to a small SNP dataset from 
a population study conducted by Saba et al., whose purpose 
was to identify SNP-gene links associated with the immuno-
logical pathways of asthma (17). We found that DNA-SEnet 

corroborated three of the study’s population-based SNP-
asthma correlations and identified two new associations 
which Saba et al. did not.
	 Regarding the similar findings, DNA-SEnet correctly clas-

Figure 1: Line graphs displaying impacts of data-related 
hyperparameters on DNA-SEnet performance. A) Impact of k-mer 
length (k) variations on AUC. k-mer corpora were generated for k 
values between [5, 7] to retrain GloVe embeddings. B) Impact of stride 
window (s) variations on AUC. k-mer corpora were recreated using s 
values between [2, 4] to retrain GloVe model. C) Impact of sequence 
length (L) variations on AUC. Sequence fragments of lengths 51, 101, 
and 151 nucleotides were created around each locus. D) Impact of 
embedding dimension (b) variations on AUC. Embedding dimension 
was set to 25, 50, and 75 to retrain GloVe model. AUC values from 
DNA-SEnet for each data-related hyperparameter were plotted.

Figure 2: Impact of embedding dimension b on GloVe model 
loss value. Line graph showing respective loss values for b of 25, 
50, and 75. The GloVe model was retrained for each b value and 
optimized over 50 iterations. The final loss values were recorded and 
plotted.
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sified rs1131882 on the TBXA2R gene as asthma-associat-
ed. Moreover, while Saba et al. identified rs2280091 on the 
ADAM33 gene within the population as asthma-associated, 
DNA-SEnet found a higher semantic connection for rs543749, 
a different SNP along the ADAM33 gene. Saba et al. also 
proposed rs2583476 on the FCER1B gene as predominantly 
linked with male asthma cases (17). While DNA-SEnet did not 
discern gender-based associations, it correctly classified this 
variant as well.
	 Additionally, DNA-SEnet classified rs1042713 and 
rs1799983 on the ADRB2 and NOS3 genes, respectively, as 
asthma-linked. Previous literature has implicated these two 
genes as heavily asthma-associated; however, they have pri-
marily been explored through population studies (17-22). In 
this study, DNA-SEnet implicates the aforementioned SNPs 
based on their surrounding genomic patterns. The SNPs and 
genes classified as asthma-associated by DNA-SEnet were 
documented (Table 4). This experiment indicates that DNA-
SEnet can identify semantic properties for known asthma-
linked mutations and apply them to predict novel loci.
 
Applying DNA-SEnet to Other Diseases
	 Although developed to identify asthma-associated loci, 
the DNA-SEnet architecture can be trained for a variety of 
diseases using the genomic sequences around significant 
loci and an equal number of negative samples (healthy se-
quences) to avoid class imbalance. We applied DNA-SEnet 
to fragments containing SNPs associated with coronary 
heart disease (AUC = 0.8089), type 2 diabetes mellitus (AUC 
= 0.8081) , and rheumatoid arthritis (AUC = 0.8177) (Figure 
3, blue bars). SVM_RBF is used as a baseline across all 
diseases (Figure 3, red bars). Our results demonstrate that 
DNA-SEnet performs consistently well when classifying each 
SNP-disease association and outperforms SVM_RBF in 
each case. This consistent performance elucidates that DNA-
SEnet can predict SNP-disease associations across myriad 
genetic diseases.

DISCUSSION 
	 This study proposes DNA-SEnet, a convolutional neu-
ral network using k-mer-based genomic sequence embed-
dings to detect asthma-associated loci. First, we extracted 
k-mer embeddings by pre-training the unsupervised GloVe 

algorithm. We calculated sequence embeddings as the sum 
of individual k-mer embeddings and used these for feature 
representation to avoid high-dimensional data from one-hot 
encoding. This method preserved computational resources 
during model training while helping DNA-SEnet analyze vec-
tor similarities across sequences. Second, we applied convo-
lutional neural networks in DNA-SEnet to improve hierarchi-
cal feature learning of sequence embeddings. We found that 
DNA-SEnet significantly outperformed the popular Support 
Vector Machine when identifying asthma-associated loci. 
Also, we demonstrated the robustness of the model through 
data-related hyperparameter experiments.
	 Furthermore, we showed that DNA-SEnet is capable of 
classifying novel associations of candidate mutations. The 
ADRB2 gene is expressed primarily on smooth muscles of 
the bronchi and cardiac myocytes and has been extensively 
correlated with asthma in terms of confirmed and pending 
SNPs (23). Candidate markers of this gene showed signifi-
cant blood-based concentrations in patients with nocturnal 
asthma compared to those with non-nocturnal asthma or 
no asthma (24). Moreover, the NOS3 gene exemplifies the 
complex nature of asthma through an interaction with en-
vironmental conditions linked to the disease (25, 26). This 
experiment demonstrates the ability of DNA-SEnet to apply 
learned hierarchical features when classifying potential asth-
ma-associated loci based on semantic properties rather than 
population-based characteristics.
	 Additionally, we applied DNA-SEnet to sequences sur-
rounding SNPs linked with other common complex diseases 
including coronary heart disease, type 2 diabetes mellitus, 
and rheumatoid arthritis. This experiment corroborated the 
generalizability of DNA-SEnet to predict other complex dis-
ease associations. This extension emphasizes the role of 
natural language processing and deep learning in genomic 

Figure 3: DNA-SEnet performance on classifying SNP-disease 
associations of other complex traits. Bar graph of AUC from 
DNA-SEnet (blue bars) on asthma, coronary heart disease, type 
2 diabetes mellitus, and rheumatoid arthritis. SVM_RBF (red bars) 
was used for comparison. Sequence fragments for SNPs of each 
disease were created to retrain GloVe and DNA-SEnet.

Table 4: rsID and genes for all novel asthma-associated SNP 
candidates identified by DNA-SEnet. DNA sequences around 
each SNP Saba et al. classified as asthma-associated were 
extracted from BEDTools and ran through DNA-SEnet. The model 
classified the above mutation as asthma-associated based on their 
semantic properties.
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sequence analysis and disease prediction.
	 DNA-SEnet can also be applied in many areas of medi-
cal research. First, it can supplement GWAS to unveil poten-
tial mutation-phenotype associations across myriad disease 
types. Second, it can explore disease-disease interactions 
via unsupervised learning and sequence embedding cluster 
analyses. Similarly, if the model can analyze disease-specific 
SNPs without being trained on them, it would detect common 
genomic features between its current disease classifications 
and the additional disease. Third, it can subtype diseases 
using locus heterogeneity. Understanding the relationship 
between a disease’s diverse subphenotypes and genetics 
would augment this application (27). Ultimately, analyzing the 
effects of disease-specific genomic patterns on protein pro-
duction, transcription factor binding, gene regulation, chro-
matin accessibility, and other biological functions can yield 
greater insights into the causes and progression of complex 
traits.
	 However, there are limitations to this model. Namely, 
DNA-SEnet includes SNPs from the GWAS Catalog, but 
does not account for other mutations (including insertion, 
deletion, or genetic amplification) or sex-based associations 
(28). Additionally, DNA-SEnet focuses on localized genomic 
patterns to generate global statistics for a k-mer corpus. This 
accounts for semantic similarities across epistatic sites, but 
not their biological interactions. Incorporating linkage disequi-
librium data would help overcome this limitation (29). None-
theless, DNA-SEnet shows promise in further understanding 
the relationships between genomic sequences and genetic 
diseases, which can yield greater insights into the biological 
mechanisms of complex diseases including asthma.

MATERIALS AND METHODS
Datasets and Data Augmentation
	 GWAS Catalog is a publicly available database containing 
collections of SNP-phenotype associations across several 
disease types analyzed in population studies and genomic 
sequencing (15). For this study, the asthma dataset was 
downloaded. SNPs were filtered to remove all entries missing 
mutated alleles and chromosomal loci. For all entries missing 
either the SNP or locus, the missing information was manual-
ly extracted from SNPedia (30) or dbSNP (31). Each genomic 
locus was expanded to symmetric sequence lengths—the 
L values—about the risk allele and inputted into BEDTools 
(32), a software used for genomic arithmetic, alongside its 
corresponding chromosome to extract the appropriate DNA 
sequences from the GRCh38 reference genome (33). Se-
quences directly extracted from the reference genome had no 
disease associations because they lacked their correspond-
ing risk alleles, and were thus classified as “healthy.” Risk al-
leles were substituted into sequences at their corresponding 
loci to generate the disease-associated sequences.
	 We used data augmentation to simulate minor nucleotide 
variations around risk alleles so DNA-SEnet could identify 
short- and long-range patterns when classifying sequence-
based disease associations. The primary difference between 
healthy and disease-associated sequences was the central 
allele. Augmented sequences preserved their corresponding 
central allele and classification. Appending slightly modified 
versions of all sequences increased the total number of se-
quences. Additionally, the reverse complements of all pos-
sible sequences were fed into the model alongside the origi-

nal to account for double stranded DNA variations, thereby 
doubling the number of sample sequences (34, 35).

Embedding Representations
	 The term k-mer refers to pieces of genomic sequences 
obtained using a fragment length k, a stride window s, and a 
genomic sequence length L, as shown in Equation 1. For this 
study, all k-mers produced from a genomic sequence were 
strung together as a k-mer sequence indexed by positive in-
tegers j ϵ [1, N], where N represents the number of k-mers 
obtained from a sequence. To generate embedding vectors, 
we used the R implementation of the unsupervised Global 
Vectors (GloVe) algorithm in the text2vec package to analyze 
global and local statistics of individual k-mers (36). By treating 
k-mers within a k-mer sequence as words within a sentence, 
we trained an embedding model which converted each k-mer 
kj into a b-dimensional vector kvj. All embedding vectors cul-
minated into a matrix of dimension n x b, where n is the num-
ber of unique k-mers and b is the specified embedding dimen-
sion. All sequence embedding vectors SEv were calculated 
as the sum of their k-mer vectors, as shown in Equation 2. 
These sequence embeddings culminated into a matrix of di-
mension ns x b, where ns is the number of sample sequences 
and b is the embedding dimension.

(2)

Classifying DNA-Asthma Associations
	 To investigate the semantic properties of DNA-asthma as-
sociations, we used Google Colab and the Keras platform in 
R to analyze the aforementioned sequence embeddings. We 
designed DNA-SEnet to accomplish this goal. DNA-SEnet 
employed convolutional neural networks (CNNs) to adaptively 
learn and generalize hierarchical spatial features (37). CNNs 
helped DNA-SEnet learn short-range embedding associa-
tions during convolution and long-range associations during 
classification. Hyperparameters were tuned using random 
grid search.
	 Additionally, we created SVM_RBF as a baseline when 
evaluating DNA-SEnet. SVMs apply statistical learning the-
ory to classification problems by constructing hyperplanes to 
separate data in f-dimensional space, where f is the number 
of features. For linearly inseparable cases in f dimensions, 
SVMs convert the data to linearly separable form in m-dimen-
sional space, where m > f (38). This model serves as an ef-
fective comparison for DNA-SEnet because both models are 
capable of high-dimensional feature extraction and reduction 
for classification problems. Moreover, both models train to 
converge their cost functions, meaning that optimization can 
be controlled using hyperparameters and will improve with 
training. We created SVMs for Linear, Polynomial, Sigmoid, 
and Radial Basis Function kernels and tuned them individu-
ally using the publicly available e1071 package within R.
	 We measured each model’s ability to rank patterns distin-
guishing the binary classifications using AUC. Receiver Oper-
ating Characteristics (ROC) Curves plot the true positive rate 
against the false positive rate for a given decision threshold. 
We extracted the threshold yielding the highest accuracy be-
fore evaluating each model.
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Identifying Novel Loci
	 We downloaded the dataset of candidate SNP-asthma 
connections from Saba et al. (17) to measure the ability of 
DNA-SEnet to identify novel asthma-linked loci. Correspond-
ing healthy and risk sequences were generated for binary 
classification. DNA-SEnet predicted the probability of each 
association using its vector-based semantic properties with a 
probability threshold of 0.5 to discern asthma associations.

Applying DNA-SEnet to Other Diseases
	 We downloaded the coronary heart disease, type 2 dia-
betes mellitus, and rheumatoid arthritis datasets from the 
GWAS Catalog to apply DNA-SEnet to additional disease 
types including cardiovascular, metabolic, and immunologi-
cal, respectively. We retrained GloVe with reconstructed k-
mer corpora and used SVM_RBF as a baseline for each dis-
ease type.
	 Code and data for this study can be found here: https://
github.com/sivab468/DNA-SEnet.
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