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an El Niño or La Niña is present, global temperatures are 
raised or lowered, respectively (4). 
	 ENSO specifically influences the regional climate 
within California by shifting the location of the jet stream, 
which has a large impact on winter weather patterns at mid-
latitudes (5). This effect increases the amount of rainfall 
within the state during the wintertime when an El Niño is 
present, while decreasing the amount of rainfall during the 
wintertime when La Niña is occurring (5,6). However, the 
changes in precipitation patterns within California owing 
to ENSO are more predictable within Southern California 
(5,6). If there is neither an El Niño nor a La Niña occurring 
(ENSO neutral), then other large-scale climate cycles (such 
as the Arctic Oscillation) have a larger influence on weather 
patterns within North America (and California) (3). As global 
temperatures continue to rise, however, the ENSO cycle 
is expected to have an increasingly greater effect on the 
temperatures within the southern United States, as well as on 
global precipitation and temperature (7,8). It is also expected 
to lead to more extreme droughts and storms globally (8).
	 The Multivariate ENSO Index (MEI) is used to represent 
the ENSO cycle within this study. MEI combines several key 
variables measured in the tropical Pacific basin (30°S-30°N 
and 100°E-70°W) that reflect the ENSO cycle phenomenon. 
The variables include the sea surface pressure, sea surface 
temperature, zonal and meridional components of the surface 
winds, and cloudiness of the sky (9). Significantly positive or 
significantly negative annual mean MEI values (≥ 0.5 or ≤ -0.5) 
represent warm El Niño or cold La Niña events, respectively.
	 Another factor which influences California’s climate 
is the amount of precipitation it receives, which can result 
in drought should lower than normal precipitation levels 
persist. Drought is defined as the “temporary reduction in 
water availability below normal quantities” (10), which can be 
interpreted as an increase in the dryness of an area. Even 
though California has always had a long history of drought, 
Diffenbaugh et al. (2015) state in their paper that recently 
California has had concurrent hot and dry years (11). They go 
on to say that the probability of this happening in the future 
will increase, with less precipitation and more evaporation/
transpiration resulting from warmer temperatures (11). These 
conditions can bring about extreme drought events such as 
the one experienced by California from 2012 to 2016 (10). 
	 The Standard Precipitation Index (SPI) is an index that 
measures the magnitude of meteorological drought for short 

The impact of timing and magnitude of the El Niño-
Southern Oscillation on local precipitation levels and 
temperatures in the Bay Area

SUMMARY
	 In this study, we analyzed temperature, 
Multivariate El Niño-Southern Oscillation Index (MEI), 
and Standard Precipitation Index (SPI) data from the 
San Francisco Bay Area from 1971 to 2016. We also 
analyzed CO2 records from Mauna Loa, HI for the 
same time period, along with the annual temperature 
anomalies for the Bay Area. Understanding the 
relationships between temperature, MEI, SPI, and 
CO2 concentration is important as they measure the 
major influencers of California’s regional climate: 
temperature, ENSO, precipitation, and atmospheric 
CO2. Thus, measurements of the three variables are 
key indicators of long term trends in climate, and 
can reveal the exact effect anthropogenic climate 
change is having on the Bay Area’s climate. Our 
research question was whether there is a correlation 
between temperature, MEI, SPI, and atmospheric 
CO2 within the Bay Area. We found that there was a 
clear correlation between warm anomalies and high 
MEI/low SPI in the period of 2013–2016, however 
only when both were historically significant. Also, 
MEI levels in general were highly correlated with 
temperature, showing that the local temperature 
anomalies in the Bay Area are significantly influenced 
by the El Niño-Southern Oscillation (ENSO) cycle. The 
influence of precipitation on the local temperature 
anomalies was limited, however. Finally, although 
there was not a statistically significant link between 
the atmospheric CO2 concentration at Mauna Loa, 
HI and the temperature anomalies in the Bay Area, 
the consistent increase in CO2 concentration could 
have had an impact on the overall increase in annual 
temperature anomalies from 1971 to 2016. 

INTRODUCTION
	 The El Niño-Southern Oscillation cycle (ENSO) is a 
recurring but irregular pattern of oceanic temperatures and 
atmospheric conditions in the east-central Equatorial Pacific 
(1), which have large impacts on rainfall and weather patterns 
in North America. When ENSO is in its “warm” phase (El Niño), 
warmer than normal ocean temperatures are observed in the 
Pacific Ocean. Similarly, when ENSO is in its “cold” phase (La 
Niña), cooler than normal ocean temperatures are seen in the 
Pacific Ocean (2). In times when ENSO is “neutral”, ocean 
temperatures in the Pacific Ocean are approximately average 
(3). ENSO also has a large impact on a global scale, for when 
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timescales. It is used to quantify measured precipitation 
as a “standardized departure from a selected probability 
distribution function that models the raw precipitation data” 
(12). A larger positive value indicates greater than median 
precipitation (wetter than normal conditions) while more 
negative values indicate less than median precipitation (13).
	 On a larger scale, anthropogenic climate change over 
the past 150 years has warmed the Earth “at a rate 20-50 
times faster” than Earth’s fastest natural climate change 
events, and its effects have been felt around the world 
(14). This results in not only habitat loss for plants and 
animals living within ecosystems globally but also severe 
infrastructure damage due to more frequent events such 
as tropical storms, extreme heat events, and disruptions to 
oceanic circulation which are exacerbated by global warming 
(15). Yet all of these catastrophic events have occurred when 
global surface and ocean temperatures have only warmed 
by approximately 0.85 °C from 1880 to 2012, while by 
2100 the global surface temperature is likely to further rise 
above 1.5 °C relative to what it was in 1880 (16). A major 
portion of this warming can be directly attributed to human 
greenhouse gas emissions, specifically CO2, which had an 
exponential growth with “a doubling time of about 30 years 
since the beginning of the industrial revolution (~1800)” (17). 
	 This study examined whether the local temperatures of 
the San Francisco Bay Area have a relationship with three 
factors over the past 46 years: 1) the large-scale ENSO 
cycle, 2) the Bay Area’s precipitation levels, and 3) the 
atmospheric CO2 concentrations. We found that from 2013 
to 2016 there was a large correlation between a historically 
significant high MEI/low SPI and warm annual temperature 
anomalies within the Bay Area, and that in general the 
influence of ENSO was a lot stronger than the influence of 
precipitation on the temperatures within the Bay Area from 
1971 to 2016. In addition, from 1971 to 2016, rising annual 
mean CO2 concentrations were also correlated with the rise 
in annual mean temperature anomalies in the Bay Area.

RESULTS
	 To determine the trend in temperature fluctuations within 
the Bay Area over a 46-year period, we calculated and 
analyzed the annual temperature anomalies in three locations 
in the Bay Area: San Francisco, Los Gatos, and Oakland. 
From 1971 to 2016, we observed a large spike in the annual 
temperature anomaly in 2014, with Los Gatos, San Francisco, 
and Oakland possessing temperature anomalies of 1.4 °C, 
2.3 °C, and 1.5 °C, respectively (Fig. 1). We then performed 
a paired t-test on the average monthly high/low temperatures 
in 2014 in all three locations against the 1971–2016 average 
to determine the significance of the temperature increase 
(Table 1). Paired t-test results showed that the average 
monthly temperatures in 2014 all had p-values below the 0.05 
threshold, rendering the temperature anomalies significant in 
the historical context (Table 1).

	 In order to better visualize the average warming over the 
46-year period for each individual city, the annual temperature 
anomalies for each station were placed in three separate 
graphs, and trendlines were generated by Google Sheets for 
each graph (Fig. 2). An example of San Francisco’s annual 
temperature anomaly bar graph along with its trendline is 
shown in Figure 2A. There was a warming trend observed in 
San Francisco, Los Gatos, and Oakland from 1971 to 2016, 
with the average warming (measured using the endpoints of 
each cities’ annual temperature anomaly trendline) being 1.34 
°C, 0.63 °C, and 0.32 °C, respectively (Fig. 2). By averaging 
these values, the average warming for the Bay Area from 
1971 to 2016 was found to be 0.76 °C. 

Fig 1: Combined annual temperature anomaly vs. year for San 
Francisco, Los Gatos, and Oakland (1971-2016). In general, negative 
annual temperature anomalies are observed towards the start of 
the study period, while positive annual temperature anomalies are 
observed towards the end of the study period. There is a large 
increase in the annual temperature anomaly from 2013 to 2014 across 
all three locations, with positive temperature anomalies persisting for 
all three locations until the end of the study period (2016).

Table 1: Paired t-test results for average monthly high/low 
temperature in 2014 vs. the 1971-2016 mean (San Francisco, Los 
Gatos, and Oakland). All of the p-values calculated are below 
the statistical significance threshold (p=0.05), meaning the 2014 
temperature anomalies are significant in the historical context.

Fig 2: Annual temperature anomaly vs. year for San Francisco (A), 
Los Gatos (B), and Oakland (C) with trendlines (1971-2016). The 
trendlines depict an increasing annual temperature anomaly across 
all three locations within the study period. A large increase in annual 
temperature anomaly from 2013 to 2014 is also seen in all three 
locations, with positive temperature anomalies persisting for all three 
locations until the end of the study period (2016).
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	 The relationship between Bay Area annual temperature 
anomaly (Ta), annual mean MEI, and annual mean SPI on 
both a short and long timescale was examined by plotting the 
three variables onto one graph, along with their three-year 
moving averages (Fig. 3). The first two variables showed a 
large positive correlation (r = 0.73 between the three-year 
moving averages of Ta and MEI), with Ta trailing MEI until 
1997, after which the MEI began trailing Ta (Fig. 3). For the 
individual annual data points, the correlation coefficient r was 
lower, equaling 0.53 between Ta and MEI (Fig. 3). Ta showed 
somewhat of an inverse correlation with SPI (r = -0.17 between 
the three-year moving averages of Ta and SPI), becoming the 
most pronounced in the period after 2009. The correlation 
coefficient for the individual data points between Ta and 
SPI was also lower than their three-year moving averages, 
equating to -0.05. From 2013 to 2016, there was a clear spike 
then gradual decrease in Ta which exceeded its fluctuations 
during the entire 1971–2016 period, the SPI decreased to 
record lows historically, and the MEI crossed the 0.5 El Niño 
threshold on a steep ascending trend. 

	 To observe the correlation between Ta and annual mean 
CO2 concentration, the two variables were plotted onto one 
graph (Fig. 4). We noticed a steady rise in CO2 concentration 
between 1971 and 2016. There was a strong (R² > 0.99) trend 
of CO2 increase at ~1.73 ppm/year, while the Ta also showed 
a trend of increase at ~0.03 deg/year but with a lower R² 
value (0.157, Fig. 4).

DISCUSSION
	 Our research question concerned the relationship 
between temperature, MEI, SPI, and atmospheric CO2 
from 1971 to 2016 in the San Francisco Bay Area. Annual 
temperature anomalies for the three cities (San Francisco, 
Los Gatos, Oakland) as well as for the Bay Area were derived 

from monthly high/low averages in this time period, annual 
mean MEI data was converted from bimonthly data, annual 
mean SPI was converted from monthly averages, and annual 
mean CO2 was converted from monthly averages. A paired 
t-test was performed on the 2014 warm temperature anomaly 
data in order to determine if it was statistically significantly 
warmer than the average temperature anomaly baseline over 
the entire study period, the trendlines in Figure 2 helped 
to quantify the growth in each of the three cities’ annual 
temperature anomalies from 1971 to 2016, and the three-
year moving averages in Figure 3 helped to create a more 
accurate representation of the long term trends of Ta, MEI, 
and SPI by eliminating short term variabilities.

	 During the 2014 temperature spike and the 2013–2016 
warm period, the Bay Area annual mean MEI crossed over 
the 0.5 threshold, which indicates an El Niño event, as Ta 
jumped above historic levels; however this relationship 
wasn’t significant, as previous periods including 1981–1983, 
1985–1987, and 1989–1992 had annual mean MEI levels at 
or exceeding 2013 to 2016’s levels without a similar spike in 
Ta (Fig. 3). In addition, the relatively high MEI levels from 
1981 to 1983 was also paired with a record SPI increase 
from 0.26 to 0.86 from 1981 to 1983. This positive correlation 
between the MEI and SPI could be explained by the fact that 
the El Niño (larger MEI values) brought more precipitation to 
the Bay Area, reflected by the relatively large positive SPI 
values. However, as the MEI increased from 1985 to 1987 
and 1989–1992, the SPI was always between -0.2 and 0.2, 
indicating that there wasn’t an increase in precipitation levels 
concurrent with the El Niños during these time periods. Taken 
together, the behavior of the MEI and SPI during the four 
periods of time (1981–1983, 1985–1987, 1989–1992, 2013–
2016) verifies the claim made by the University of California 
Museum of Paleontology and Tom Di Liberto that the exact 
effect which ENSO has on precipitation levels in Northern 

Fig 3: Bay Area annual temperature anomaly (1971-2016, green 
squares), annual mean SPI (1971-2016, grey stars), and annual mean 
MEI (1971-2016, orange stars) and their corresponding three-year 
moving averages (green, grey, and orange solid lines, respectively). 
A large increase in both Ta and MEI from 2013-2014 is seen, and 
both variables were positive from 2014 to 2016. Meanwhile, a large 
decrease in SPI is observed in both 2013 and 2015.

Fig 4: Bay Area annual temperature anomaly (1971-2016, green 
squares and solid line) and Mauna Loa, HI annual mean CO2 (1971-
2016, blue stars and solid line). Annual mean CO2 increased linearly 
within the study period, with the correlation coefficient R2 being 
0.9921. Ta also increased within the study period but with a lower 
R2 (0.157).
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California is highly variable (5,6). In addition, it is seen that a 
high MEI alone does not necessarily directly correlate year to 
year with large warm temperature anomalies (r = 0.53), but it 
is still worth noting the relatively high correlation coefficient (r 
= 0.73) between these two variables on a three-year moving 
average, indicating that the MEI has a relatively large-scale 
influence overall on Ta within the Bay Area.
	 The Bay Area annual mean SPI values from 2013 to 
2016 provided another piece of the puzzle for the temperature 
spike. During this time the SPI dropped to two of the lowest 
values observed within the 46-year study period (-0.52 and 
-0.39) in 2013 and 2015 respectively (Fig. 3), rendering it 
historically significant. This also shows that it was the driest 
period over the 46 years studied. The historical drought 
combined with the warming El Niño trend may have been 
a main contributor to the historic warm Ta (Fig. 3). The SPI 
itself, however, did not show a strong correlation with Ta given 
the fact that the correlation coefficient between the three-year 
moving averages of SPI and Ta was -0.17 and that there was 
an even smaller correlation coefficient between the annual 
averages (r = -0.05).
	 Overall, the 2014–2016 historically high Ta in conjunction 
with the historically low Bay Area annual mean SPI, both 
of which had simultaneous magnitudes which were not 
otherwise seen during the 46-year time period analyzed 
in this study, support Diffenbaugh et al. (2015)’s claim that 
rising temperatures increase the likelihood of extreme dry 
conditions and warm temperatures coinciding with each 
other (11). However, this relationship seems variable, as the 
relationship between precipitation and Ta was rather weak (r 
= -0.05 without the three-year moving average and r = -0.17 
with the three-year moving average). Also, there seems to 
be a pattern of severe droughts concurrent with warm El 
Niño resulting in significant warm anomalies, such as the 
ones observed from 2013 to 2016. In addition, ENSO (with 
a three-year moving average) had an overall large observed 
impact on the three-year moving average Ta, while SPI 
possessed a weak impact on both the year-to-year and the 
three-year moving average Ta. These results indicate that 
the Bay Area temperature is significantly influenced by the 
oceanic system and that this influence could be on a multi-
year scale, while the relationship between precipitation and 
temperature anomalies is not as coherent (Fig. 3). In addition, 
we concluded that ENSO’s effect on precipitation within the 
Bay Area is variable. 
	 The annual mean CO2 concentration at Mauna Loa 
showed a persistent increase between 1971 and 2016 (Fig. 
4). While there was no CO2 spike corresponding to the 2014 
Ta spike, the upward trend of CO2 concentration may still 
explain the overall increase in the annual average temperature 
and Ta during the study period (Fig. 4) through its role as a 
greenhouse gas. Thus, the overall average increase of 0.76 
°C in the Bay Area may be attributed to the CO2-induced 
greenhouse effect; however, it is still important to remember 
that other properties such as evaporative cooling levels 

and energy storage capacity also have an impact on local 
temperatures in addition to incoming and outgoing solar 
radiation.
	 The next steps for this research include incorporating 
more data series for both temperature and SPI for additional 
cities in the Bay Area to ensure that the results are truly 
representative of the Bay Area, as well as extending the time 
period examined to further reduce potential bias which may 
be present in the current study period. An examination of the 
impacts that droughts may impose on Northern California 
ecosystems would allow us to better understand the current 
situation of both urban ecosystems within the Bay Area as 
well as the coniferous forests which dominate the Northern 
Californian landscape, including how much of an effect rising 
temperatures and increasing droughts in the future will have 
on the health of these ecosystems.

MATERIALS AND METHODS
	 In this study we focused on the San Francisco Bay Area 
(located in Northern California), specifically the three cities of 
San Francisco, Los Gatos, and Oakland, CA. The time period 
that was selected spanned from 1971 to 2016, encompassing 
the period of the 2012–2016 extreme drought in California as 
well as the forty years preceding the unprecedented warm 
and dry period. Three weather stations, one from each of 
these cities, with the most complete temperature records 
were selected, and monthly average high (Th) and low (Tl) 
temperatures from each of these three stations were recorded 
on a spreadsheet. This data was provided by the National 
Centers for Environmental Information (NCEI) of National 
Oceanic and Atmospheric Administration (NOAA) through 
their Climate Data Online tool (18). 
	 The monthly average high and low temperatures 
reflected the mean fluctuation between the daily high and low 
temperature in the month for each station. For our study, such 
small-scale fluctuations had to be filtered out to help reveal 
any long-term trend in the temperature data. Therefore, 
annual temperature anomalies (Ta) for all three locations 
were calculated using Equation (1) below: 

	 Ta(j) = Ty(j) - Tb	 	 	 	 (1)

Here j represents the year and ranges from 1971 to 2016, 
Ty represents the average annual temperature for each year, 
and Tb represents the 46-year mean temperature. Tb was 
calculated based on Equation (2) below:

						    
	 	 	 	 	 (2)
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And Ty was calculated based on Equation (3):

	 	 	 	 	 (3)

where i represents the month and ranges from 1 to 12 and Tm 
represents the average monthly temperature and was defined 
as follows:

	 Tm(i) = [Th(i) + Tl(i)]/2	 	 	 	 (4)

	 By calculating the average of the monthly high and low 
temperatures (Eq. 4), the diurnal variabilities were removed in 
the monthly mean temperature (Tm).  Calculating the average 
of the monthly mean over the year (Eq. 3) further removed 
seasonal variabilities in the annual mean temperature (Ty) 
and subsequently the annual temperature anomaly (Ta).  By 
using Ta instead of monthly temperature anomalies, potential 
climate-related trends can be better presented. Ta was then 
converted into units of °C  to ensure consistency and was used 
for the remainder of this study. In addition, a paired t-test was 
performed on the average monthly high/low temperatures in 
all three locations for 2014 against the 1971–2016 average 
to determine the significance of the temperature increase 
(Table 1). 
	 The endpoints of each trendline (which was generated 
along with the graphs in Google Sheets) were used to calculate 
the magnitude of warming for each of the three locations (Fig. 
2). The three warming magnitudes were then averaged to 
represent the average warming in the Bay Area. Afterwards, 
the annual temperature anomalies for all three stations were 
averaged to get Ta, which was more representative of the Bay 
Area’s regional climate. 
	 Next, bi-monthly data of the MEI (9) for 1971–2016, 
supplied by the NOAA Physical Sciences Laboratory (19), 
was placed on another spreadsheet. The bi-monthly MEIs 
were then averaged for each year to obtain the annual mean 
MEI. 
	 In addition, monthly SPI (13) data for each of the three 
stations for the period 1971–2016 was taken from the Climate.
gov’s Drought Risk Atlas (20), then averaged to obtain the 
annual mean SPI for the Bay Area. This ensured that annual 
averages were present throughout all of the datasets. Then 
Ta, annual mean MEI, and annual mean SPI were plotted 
onto the same continuous graph (Fig. 3). A three-year moving 
average was applied to all three data sets to smooth out some 
short-term natural variabilities and to help better visualize any 
long-term trends and relationships in the data.
	 Finally, monthly average atmospheric CO2 concentration 
(ppm) from Mauna Loa, HI, which also spanned from 1971 
to 2016, was imported onto a spreadsheet. This data was 
provided by the Scripps CO2 Program (21). Since CO2 tends 
to be well mixed when it is emitted into the atmosphere 
globally (22), the concentrations of the gas measured at 

Mauna Loa would therefore be representative of the levels 
within the Bay Area on the annual scale. The annual mean 
CO2 concentrations were calculated using Equation (5):

	 				    (5)

where i represents the month, and ranges from 1-12 and 
Cm represents the monthly average CO2 concentration. CO2 
concentrations were placed into a continuous graph with Ta 
(Fig. 4).
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