
Journal of Emerging Investigators • www.emerginginvestigators.org 17 JULY 2020 | VOL 2 | 1

are done on computers, chess players at all levels can benefit
from the ability to analyze a game immediately by taking
a picture of a real-life board, as opposed to manual input.
Advances in powerful algorithms and hardware computing
units have allowed for deep learning algorithms to solve a wide
variety of tasks which were previously deemed difficult for
computers to tackle. A type of artificial neural network, called
a Convolutional Neural Network (CNN), has demonstrated
capabilities for highly accurate image classification after
being trained on a large data set of samples (1).	
	 Our hypothesis was as follows: a handheld app built
leveraging advances in vision and machine learning will be
faster than manual entry into Stockfish for a variety of opening,
midgame and endgame positions from a simple live capture
or a photograph. To test this hypothesis, the Augmented
Reality Chess Analyzer (ARChessAnalyzer) was developed
that uses a combination of techniques, using a combination of
traditional vision technologies OpenCV (2), which segments
the board, and a trained machine learning model AlexNet
(3), which recognizes the pieces from the segmented board.
The output of the piece detector is a Forsyth–Edwards
Notation(FEN) (4) position string that is used by the popular
chess engine StockFish (5) for analysis, and finally the
engine overlays the best move along with the chess diagram
on the physical board. This ensemble of algorithms was
integrated into an iOS mobile app that is an augmented
reality chess analysis engine. The app provides immediate
feedback and helps chess players with their game.	

RESULTS
	 To verify the hypothesis that ARChessAnalyzer was fater
than manual entry, our experiments were set up as follows.
An online chess analyzer (http://chess.com/analysis) which
uses StockFish as its backengine was chosen for manual
entry. A variety of chess diagrams which included five well
known opening, midgame positions in chess literature were
chosen from http://www.chess.com and their Wikipedia pages
(Figure 1). Openings were defined as having atmost 6-7
moves or deletions from the starting board, endgames were
defined as having atmost 7-8 pieces on the board and all other
positions were defined as midgames. Midgames were more
complicated for manual input than opening and endgame
positions. Representative images of the app and manual entry
of StockFish are shown in Figure 2. The average, standard
deviation and t-test results were calculated and tabulated for

Augmented Reality Chess Analyzer (ARChessAnalyzer):
In-Device Inference of Physical Chess Game Positions
through Board Segmentation and Piece Recognition
using Convolutional Neural Networks

SUMMARY
	 Chess game position analysis is important
in improving one’s game. One method requires
entry of logged moves into a chess engine which is
cumbersome and error prone. A quick and effective
method for analysis is hence strongly desired. Our
hypothesis was that a faster chess game entry
method can be built using a combination of vision
and machine learning techniques to be analyzed
directly in a chess engine. To test the hypothesis, we
developed the Augmented Reality Chess Analyzer
(ARChessAnalyzer), a complete pipeline from a
live image capture of a physical chess game, to
board and piece recognition, to move analysis and
finally to augmented reality overlay of the position
and best move on the physical board. The chess
position predictor is like a scene predictor - it is an
ensemble of traditional image and vision techniques
and image classifier for chess board recognition and
Convolutional Neural Network (CNN) for chess piece
recognition. ARChessAnalyzer was used - as the
input mechanism - to compare against manual entry
into StockFish which was also the chess engine used
in the app. The results validate the hypothesis that
both for sparse and dense chessboard populations,
ARChessAnalyzer was faster than manual entry with
p-value < 0.005. This app and technologies underneath
will help chess learners improve their game and
hopefully will be widely used in chess clubs.

INTRODUCTION
	 For a player to improve one’s chess game, it is important
to record the moves, so that one can analyze the game later
perhaps in the chess club either with a coach or using an
online chess engine. A chess engine is a program where one
manually enters a chess position and that analyzes chess
positions, and generates the best move. Examples of chess
engines are StockFish, Houdini or Komodo to name a few. The
recording of moves during a chess game is a tedious manual
task that is error prone and impedes the flow of the game and
hinders efficient use of time. Then during post-game analysis,
the handwritten moves have to be translated into the chess
engine which is also error prone. Instead, imagine if one can
capture a live image of the game, detect the board and all the
pieces, predict the board position and analyze it to provide
immediate feedback of the best move available to the player.
In an age when much analysis and storage of chess games

Anav Mehta1 and Huzefa Mehta, PhD
1Cupertino High School, Cupertino, CA, USA

Article

Journal of Emerging Investigators • www.emerginginvestigators.org 17 JULY 2020 | VOL 2 | 2

each chess diagram (Table 1). We confirmed our hypothesis
that ARChessAnalyzer was faster than manual entry with
statistical significance of p-value < 0.005.

DISCUSSION
	 The results clearly support the hypothesis that using
ARChessAnalyzer reduces the analysis time across all chess
diagrams. The t-test result for degree of freedom four for area
under one tail was greater than 4.604 which corresponds to a
p-value < 0.005. The time for manual StockFish entry was the
greatest for mid-game positions (Table 1). In a manual entry,
one starts by modifying the board with a full board or empty
board. The time for entry is related to the number of changed
pieces from the starting board position of entry which can
be a full or empty board. The opening chess diagram can be
attained fastest with a full board and moving or removing the
pieces. For end chess games the fastest entry was starting
with an empty board and populating the board. For midgame
diagrams one starts with a full board and pieces are moved or
deleted. Hence, midgames take the most time, while openings
and endgames almost have the same time for manual entry.
For ARChessAnalyzer, there was no difference in entry
times between opening, midgame and endgame positions.
However, ARChessAnalyzer had the most time advantage
(100x) compared to manual entry in midgames. For openings
and endgames, the time advantage was 10 times faster.

	 The following are a few things to consider going forward.
First, the experience of the person in manual entry in a
chess engine like StockFish is an important variable. The
experiments were done by the author who is well experienced
with StockFish. Further, ARChessAnalyzer beat manual
entry by 10-100x. Our hypothesis would have been further
strenghtened by choosing manual entry by people with all
levels of chess engine experience.
	 Second, accuracy was a variable which was eliminated

Figure 1: Beginning, Midgame and Endgame Chess Diagrams (from
Wikipedia) and Number of Pieces in Each Diagram

Figure 2: Screenshots of ARChessAnalyzer App (a) Chessboard
Detection (b) Canny Edge and Houghline Segmentation (c)
Augmented Reality Overlay and (d) StockFish.

Table 1: Chess Diagram Entry Times for StockFish and
ARChessAnalyzer

Journal of Emerging Investigators • www.emerginginvestigators.org 17 JULY 2020 | VOL 2 | 3

in our hypothesis. The accuracy of ARChessAnalyzer is the
function of the board population. Empty squares have the
highest prediction accuracy. Hence, endgames have a higher
accuracy (95.24%) than midgames. which in turn have a
higher accuracy (93.47%) than openings (91.02%). The overall
accuracy of ARChessAnalyzer was 93.45% and it is currently
being improved using better segmentation techniques and
improved CNN models. It was hard to ascertain the accuracy
of a human entry, since an error can be corrected on an
observation before the final chess diagram comparison.
An hypothesis can however be designed to prove that
ARChessAnalyzer accuracy was better than human entry
into StockFish. A human error can be defined to be either
picking a wrong piece or placing a piece in a wrong position
anytime during the entry. For accuracy, we will also need to
gather larger samples and hence we would need repeated
tries per diagram by multiple people with different levels of
chess engine experience. We can then tabulate the errored
entries from both methods and compare.

MATERIALS AND METHODS
	 An ensemble of methods and tools with engineering
tradeoffs was designed, while advancing the state of the art
to develop the entire chess position pipeline in an iOS app
(Figure 3). The “Predict Chessboard” step requires generation
of a trained model. Figure 4 describes the model generation
pipeline and Figure 5 describes the preprocessing and model
generation steps. This app and its technologies advance the
state of the art in robust detection and segmentation of the
board and piece detection using a trained AlexNet model. It is
also the first of its kind hand held device app which integrates
end-to-end integration of these technologies by fine-tuning
accuracy and size of the model. The accuracy of the app was
93.45% and it takes 2.5-4.5s from live capture to diagram
prediction.

Position Detection Pipeline
The following are the steps in the position detection 		
pipeline:
	 1. Detect Chessboard: The presence of a chessboard 	
	 was determined using a simple binary image classifier.
	 2. Segment Chessboard: OpenCV image and vision 	
	 techniques are then used to determine the outer bounds 	
	 of the chessboard and segment the image into 64 	
	 pieces (7-10)
	 3. Predict Chessboard: A pretrained CNN model is used 	
	 to predict the 64 image and form the position string.
	 4. Analyze Chessboard: The string is fed into StockFish 	
	 to determine the next best move.
	 5. Augmented Reality Overlay: The next move and 	
	 position are overlaid over the physical chessboard.

Chessboard Model Generation
The following are the steps in chessboard model generation
	 1. Data Collection and Labeling: A database of 		
	 approximately 2,600 chess pieces was manually 		
	 constructed from one tournament chess set, placed on 	
	 the board and manually labelled with one of 13 classes: 	
	 white and black of pawn, knight, bishop, rook, queen, 	
	 king, and empty.
	 2. Data Preprocessing: To improve the performance 	
	 of AlexNet, the data set was augmented with 		
	 transformations such as cropped, flipped and blur. 	
	 The data was then partitioned into training (80%) and 	
	 validation (20%) sets.
	 3.Model Generation and Training: AlexNet (ImageNet 	
	 (12) 2012 winner), employing Graphic Processing Units 	
	 (GPUs) to accelerate deep learning (3) was used as the 	
	 CNN in our app.

Figure 3: ARChessAnalyzer Position Pipeline from Chessboard
Detection to Augmented Reality Overlay Display.

Figure 4: AlexNet Model Generation Pipeline

Figure 5: Data Preprocessing and AlexNet Model Generation.

Journal of Emerging Investigators • www.emerginginvestigators.org 17 JULY 2020 | VOL 2 | 4

	 a. Transfer Learning: Weights and layers from the 	
	 original AlexNet were used as a starting point and fine-	
	 tuned with pre-processed images with a batch size of 	
	 64. Transfer learning (6) leverages the previously 	
	 learned low level features and requires less data to 	
	 arrive at a satisfactory CNN.
	 b.Model Precision: The AlexNet model was fine-tuned 	
	 with 32b (FP32), but it was reduced down to 16b (FP16) 	
	 with CoreML tool, during model conversion, to fit in the 	
	 size of the app (11).

Tools
	 An iOS development platform with Swift 5 and Xcode
with bridges to OpenCV and StockFish was used. AlexNet
was trained using Caffe with Nvidia Tesla K80 GPUs on
Google Colaboratory using Python 3.7.

Experiment Setup
	 The author, who is experienced in StockFish, entered
the diagrams (Figure 2) manually in StockFish. The time
from start of the entry to before analysis is recorded using
a stopwatch (Horo) on the Mac. If any error was made (i.e.
a wrong piece was picked or a piece was placed in a wrong
position), that entry was discarded. The best time of two
non-errored entries was tabulated. For ARChessAnalyzer,
the chess diagram is converted to a position on a physical
chessboard and analyzed via the app. The time from start of
the live capture of the physical to before the StockFish analysis
was recorded. If the final diagram did not match the desired
diagram, the entries from both methods were discarded.
Only entry (and not analysis) time was considered to remove
variables such as the version of StockFish and differences
in underlying processors. The hypothesis is formulated
with μ0 and μa corresponding to the average time taken for
direct entry and ARChessAnalyzer. The null hypothesis H0
(μa ≥ μ0) is defined as entry by ARChessAnalyzer having
the same or worse time than manual entry using StockFish
and the alternate hypothesis Ha (μa < μ0) is defined as entry
by ARChessAnalyzer having faster time than manual entry
using StockFish. The variables of the setup are the chess
diagrams, time for StockFish direct entry and time for entry
via ARChessAnalyzer. For each chess diagram, the time
results of direct StockFish entry and ARChessAnalyzer
(and respective average, standard deviation and t-results)
were tabulated. The t-statistic (t =(μ0−μa)/σa) was computed,
where σa was the standard deviation. Statistical significance
was determined as p-value < 0.005 for our t-test. Since our
Ha was one tailed, t > 4.604 was used for four degrees of
freedom from the t-distribution table.

Received: December 8, 2019
Accepted: June 15, 2020
Published: July 17, 2020

REFERENCES
1. LeCun Y., Bengio Y. & Hinton G. (2015). ”Deep learning,”
Nature, vol. 521, pp. 436-444.
2. Bradski G., (2000). ”The OpenCV Library,” Dr. Dobb’s
Journal: Software Tools for the Professional Programmer, vol.
25, no. 11, pp. 120-123.	
3. AlexNet– ImageNet Classification with Deep Convolutional
Neural Networks (2018). https://neurohive.io/en/popular-
networks/alexnet- imagenet-classif ication-with-deep-
convolutional-neural-networks/
4. Edwards Notation, (2020). https://en.wikipedia.org/wiki/
Forsyth%E2%80%93Edwards_ Notation
5. StockFish, (2020) https://stockfishchess.org/
6. Karpathy A., (2020) ”Transfer Learning,” Stanford
University. http://cs231n.github.io/transfer-learning
7. Soh, L., (1997). Robust recognition of calibration charts,
in: 6th International Conference on Image Processing and
its Applications, IEE. https://doi. org/10.1049/cp:19970941,
doi:10.1049/cp:19970941.
8. Zhao F., Wei C., & Tanget J., (2011) ”An automated x-corner
detection algorithm (axda).” Journal of Software. vol. 6(5), pp.
791–797.
9. Harris, C., Stephens, M., (1988). A combined corner and
edge detector., in: Alvey vision conference, Citeseer. pp. 10–
5244.
10. Duda, R.O., Hart, P.E., (1972). Use of the hough
transformation to detect lines and curves in pictures. Commun.
ACM 15, 11–15. http://doi.acm. org/10.1145/361237.361242,
doi:10.1145/361237.361242.
11. Wang N., Choi J., Brand D., Chia-Yu Chen, Gopalakrishnan
K., (2018). “Training Deep Neural Networks with 8-bit
Floating Point Numbers”, Conference on Neural Information
Processing Systems (NeurIPS)
12. Deng J., Dong W., Socher R., Li L., Kai L. and Fei-Fei
L., (2009). ”ImageNet: A large-scale hierarchical image
database,” IEEE Conference on Computer Vision and Pattern
Recognition.

Copyright: © 2020 Mehta and Mehta. All JEI articles
are distributed under the attribution non-commercial, no
derivative license (http://creativecommons.org/licenses/
by-nc-nd/3.0/).  This means that anyone is free to share,
copy and distribute an unaltered article for non-commercial
purposes provided the original author and source is credited.

