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are done on computers, chess players at all levels can benefit 
from the ability to analyze a game immediately by taking 
a picture of a real-life board, as opposed to manual input. 
Advances in powerful algorithms and hardware computing 
units have allowed for deep learning algorithms to solve a wide 
variety of tasks which were previously deemed difficult for 
computers to tackle. A type of artificial neural network, called 
a Convolutional Neural Network (CNN), has demonstrated 
capabilities for highly accurate image classification after 
being trained on a large data set of samples (1).	
	 Our hypothesis was as follows: a handheld app built 
leveraging advances in vision and machine learning will be 
faster than manual entry into Stockfish for a variety of opening, 
midgame and endgame positions from a simple live capture 
or a photograph. To test this hypothesis, the Augmented 
Reality Chess Analyzer (ARChessAnalyzer) was developed 
that uses a combination of techniques, using a combination of 
traditional vision technologies OpenCV (2), which segments 
the board, and a trained machine learning model AlexNet 
(3), which recognizes the pieces from the segmented board. 
The output of the piece detector is a Forsyth–Edwards 
Notation(FEN) (4) position string that is used by the popular 
chess engine StockFish (5) for analysis, and finally the 
engine overlays the best move along with the chess diagram 
on the physical board. This ensemble of algorithms was 
integrated into an iOS mobile app that is an augmented 
reality chess analysis engine. The app provides immediate 
feedback and helps chess players with their game.	

RESULTS
	 To verify the hypothesis that ARChessAnalyzer was fater 
than manual entry, our experiments were set up as follows. 
An online chess analyzer (http://chess.com/analysis) which 
uses StockFish as its backengine was chosen for manual 
entry. A variety of chess diagrams which included five well 
known opening, midgame positions in chess literature were 
chosen from http://www.chess.com and their Wikipedia pages 
(Figure 1). Openings were defined as having atmost 6-7 
moves or deletions from the starting board, endgames were 
defined as having atmost 7-8 pieces on the board and all other 
positions were defined as midgames. Midgames were more 
complicated for manual input than opening and endgame 
positions. Representative images of the app and manual entry 
of StockFish are shown in Figure 2. The average, standard 
deviation and t-test results were calculated and tabulated for 
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SUMMARY
	 Chess game position analysis is important 
in improving one’s game. One method requires 
entry of logged moves into a chess engine which is 
cumbersome and error prone. A quick and effective 
method for analysis is hence strongly desired.  Our 
hypothesis was that a faster chess game entry 
method can be built using a combination of vision 
and machine learning techniques to be analyzed 
directly in a chess engine. To test the hypothesis, we 
developed the Augmented Reality Chess Analyzer 
(ARChessAnalyzer), a complete pipeline from a 
live image capture of a physical chess game, to 
board and piece recognition, to move analysis and 
finally to augmented reality overlay of the position 
and best move on the physical board. The chess 
position predictor is like a scene predictor - it is an 
ensemble of traditional image and vision techniques 
and image classifier for chess board recognition and 
Convolutional Neural Network (CNN) for chess piece 
recognition. ARChessAnalyzer was used - as the 
input mechanism - to compare against manual entry 
into StockFish which was also the chess engine used 
in the app. The results validate the hypothesis that 
both for sparse and dense chessboard populations, 
ARChessAnalyzer was faster than manual entry with 
p-value < 0.005. This app and technologies underneath 
will help chess learners improve their game and 
hopefully will be widely used in chess clubs.

INTRODUCTION
	 For a player to improve one’s chess game, it is important 
to record the moves, so that one can analyze the game later 
perhaps in the chess club either with a coach or using an 
online chess engine. A chess engine is a program where one 
manually enters a chess position and that analyzes chess 
positions, and generates the best move. Examples of chess 
engines are StockFish, Houdini or Komodo to name a few. The 
recording of moves during a chess game is a tedious manual 
task that is error prone and impedes the flow of the game and 
hinders efficient use of time. Then during post-game analysis, 
the handwritten moves have to be translated into the chess 
engine which is also error prone. Instead, imagine if one can 
capture a live image of the game, detect the board and all the 
pieces, predict the board position and analyze it to provide 
immediate feedback of the best move available to the player. 
In an age when much analysis and storage of chess games 
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each chess diagram (Table 1). We confirmed our hypothesis 
that ARChessAnalyzer was faster than manual entry with 
statistical significance of p-value < 0.005.

DISCUSSION
	 The results clearly support the hypothesis that using 
ARChessAnalyzer reduces the analysis time across all chess 
diagrams. The t-test result for degree of freedom four for area 
under one tail was greater than 4.604 which corresponds to a 
p-value < 0.005. The time for manual StockFish entry was the 
greatest for mid-game positions (Table 1). In a manual entry, 
one starts by modifying the board with a full board or empty 
board. The time for entry is related to the number of changed 
pieces from the starting board position of entry which can 
be a full or empty board. The opening chess diagram can be 
attained fastest with a full board and moving or removing the 
pieces. For end chess games the fastest entry was starting 
with an empty board and populating the board. For midgame 
diagrams one starts with a full board and pieces are moved or 
deleted. Hence, midgames take the most time, while openings 
and endgames almost have the same time for manual entry. 
For ARChessAnalyzer, there was no difference in entry 
times between opening, midgame and endgame positions. 
However, ARChessAnalyzer had the most time advantage 
(100x) compared to manual entry in midgames. For openings 
and endgames, the time advantage was 10 times faster. 

	 The following are a few things to consider going forward. 
First, the experience of the person in manual entry in a 
chess engine like StockFish is an important variable. The 
experiments were done by the author who is well experienced 
with StockFish. Further, ARChessAnalyzer beat manual 
entry by 10-100x. Our hypothesis would have been further 
strenghtened by choosing manual entry by people with all 
levels of chess engine experience. 
	 Second, accuracy was a variable which was eliminated 

Figure 1: Beginning, Midgame and Endgame Chess Diagrams (from 
Wikipedia) and Number of Pieces in Each Diagram

Figure 2: Screenshots of ARChessAnalyzer App (a) Chessboard 
Detection (b) Canny Edge and Houghline Segmentation (c) 
Augmented Reality Overlay and (d) StockFish.

Table 1: Chess Diagram Entry Times for StockFish and 
ARChessAnalyzer
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in our hypothesis. The accuracy of ARChessAnalyzer is the 
function of the board population. Empty squares have the 
highest prediction accuracy. Hence, endgames have a higher 
accuracy (95.24%) than midgames. which in turn have a 
higher accuracy (93.47%) than openings (91.02%). The overall 
accuracy of ARChessAnalyzer was 93.45% and it is currently 
being improved using better segmentation techniques and 
improved CNN models. It was hard to ascertain the accuracy 
of a human entry, since an error can be corrected on an 
observation before the final chess diagram comparison. 
An hypothesis can however be designed to prove that 
ARChessAnalyzer accuracy was better than human entry 
into StockFish. A human error can be defined to be either 
picking a wrong piece or placing a piece in a wrong position 
anytime during the entry. For accuracy, we will also need to 
gather larger samples and hence we would need repeated 
tries per diagram by multiple people with different levels of 
chess engine experience. We can then tabulate the errored 
entries from both methods and compare. 

MATERIALS AND METHODS
	 An ensemble of methods and tools with engineering 
tradeoffs was designed, while advancing the state of the art 
to develop the entire chess position pipeline in an iOS app 
(Figure 3).  The “Predict Chessboard” step requires generation 
of a trained model. Figure 4 describes the model generation 
pipeline and Figure 5 describes the preprocessing and model 
generation steps. This app and its technologies advance the 
state of the art in robust detection and segmentation of the 
board and piece detection using a trained AlexNet model. It is 
also the first of its kind hand held device app which integrates 
end-to-end integration of these technologies by fine-tuning 
accuracy and size of the model. The accuracy of the app was 
93.45% and it takes 2.5-4.5s from live capture to diagram 
prediction.

Position Detection Pipeline
The following are the steps in the position detection 		
pipeline:
	 1. Detect Chessboard: The presence of a chessboard 	
	 was determined using a simple binary image classifier.
	 2. Segment Chessboard: OpenCV image and vision 	
	 techniques are then used to determine the outer bounds 	
	 of the chessboard and segment the image into 64 	
	 pieces (7-10)  
	 3. Predict Chessboard: A pretrained CNN model is used 	
	 to predict the 64 image and form the position string.
	 4. Analyze Chessboard: The string is fed into StockFish 	
	 to determine the next best move.
	 5. Augmented Reality Overlay: The next move and 	
	 position are overlaid over the physical chessboard.

Chessboard Model Generation
The following are the steps in chessboard model generation
	 1. Data Collection and Labeling: A database of 		
	 approximately 2,600 chess pieces was manually 		
	 constructed from one tournament chess set, placed on 	
	 the board and manually labelled with one of 13 classes: 	
	 white and black of pawn, knight, bishop, rook, queen, 	
	 king, and empty.
	 2. Data Preprocessing: To improve the performance 	
	 of AlexNet, the data set was augmented with 		
	 transformations such as cropped, flipped and blur. 	
	 The data was then partitioned into training (80%) and 	
	 validation (20%) sets.
	 3.Model Generation and Training: AlexNet (ImageNet 	
	 (12) 2012 winner), employing Graphic Processing Units 	
	 (GPUs) to accelerate deep learning (3) was used as the 	
	 CNN in our app.

Figure 3: ARChessAnalyzer Position Pipeline from Chessboard 
Detection to Augmented  Reality Overlay Display.

Figure 4: AlexNet Model Generation Pipeline

Figure 5:  Data Preprocessing and AlexNet Model Generation.



Journal of Emerging Investigators  •  www.emerginginvestigators.org 17 JULY  2020   |  VOL 2  |  4

	 a. Transfer Learning: Weights and layers from the 	
	 original AlexNet were used as a starting point and fine-	
	 tuned with pre-processed images with a batch size of 	
	 64. Transfer learning (6) leverages the previously 	
	 learned low level features and requires less data to 	
	 arrive at a satisfactory CNN.
	 b.Model Precision: The AlexNet model was fine-tuned 	
	 with 32b (FP32), but it was reduced down to 16b (FP16) 	
	 with CoreML tool, during model conversion, to fit in the 	
	 size of the app (11).

Tools
	 An iOS development platform with Swift 5 and Xcode 
with bridges to OpenCV and StockFish was used. AlexNet 
was trained using Caffe with Nvidia Tesla K80 GPUs on 
Google Colaboratory using Python 3.7.  

Experiment Setup
	 The author, who is experienced in StockFish, entered 
the diagrams (Figure 2) manually in StockFish. The time 
from start of the entry to before analysis is recorded using 
a stopwatch (Horo) on the Mac. If any error was made (i.e. 
a wrong piece was picked or a piece was placed in a wrong 
position), that entry was discarded. The best time of two 
non-errored entries was tabulated. For ARChessAnalyzer, 
the chess diagram is converted to a position on a physical 
chessboard and analyzed via the app. The time from start of 
the live capture of the physical to before the StockFish analysis 
was recorded. If the final diagram did not match the desired 
diagram, the entries from both methods were discarded. 
Only entry (and not analysis)  time was considered to remove 
variables such as the version of StockFish and differences 
in underlying processors. The hypothesis is formulated 
with μ0 and μa corresponding to the average time taken for 
direct entry and ARChessAnalyzer. The null hypothesis H0 
(μa  ≥  μ0) is defined as entry by ARChessAnalyzer having 
the same or worse time than manual entry using StockFish 
and the alternate hypothesis Ha (μa < μ0) is defined as entry 
by ARChessAnalyzer having faster time than manual entry 
using StockFish. The variables of the setup are the chess 
diagrams, time for StockFish direct entry and time for entry 
via ARChessAnalyzer. For each chess diagram, the time 
results of direct StockFish entry and ARChessAnalyzer 
(and respective average, standard deviation and t-results) 
were tabulated. The t-statistic (t =(μ0−μa)/σa) was computed, 
where σa was the standard deviation. Statistical significance 
was determined as p-value < 0.005 for our t-test. Since our 
Ha was one tailed, t > 4.604 was used for four degrees of 
freedom from the t-distribution table.
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