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therapies, including levodopa, are often ineffective [7,14].
Dopamine neurons are located in the substantia nigra, a 
brain region which is involved in coordinating and planning 
body movement [1,6]. A reduction in dopamine from these 
neurons produces several motor symptoms, one of the 
earliest of which is difficulty in speech [2,11,15–17]. Voice 
symptoms are attributed to involvement of the vagus nerve 
and recurrent laryngeal nerve, which occurs either by 
pathological inclusions or by abnormal excitatory drive from 
the basal ganglia [18]. The voice of PD patients gets softer, 
breathy, slurred, and often mumbled. The tone of the voice 
becomes monotone without any inflection [7,17,19–23]. They 
also exhibit altered voice quality (dysphonia), a reduced range 
of articulation (hypokinetic articulation), and an irregular 
and rapid rate of speech (tachyphemia) [19]. In comparison 
to changes in brain imaging, PD associated voice changes 
are easier and cheaper to assess and occur earlier in the 
disease process. We therefore sought to create a method 
for detecting PD associated voice changes, which may 
be used to reliably, cheaply, and accurately diagnose PD. 
To diagnose PD using voice patterns, we took a machine 
learning approach that employed binary classification to 
assign inputs to one of two states: likely to have PD and 
unlikely to have PD. This classification can be accomplished 
by different types of algorithms[21,24–28], and we used 
two in this study: logistic regression and artificial neural 
networks. Logistic regression is a method of classification 
that finds the probability of a certain event occurring (in this 
case the probability of PD) as the output of the function [29]. 
An artificial neural network (ANN) is an algorithm, inspired 
by neuronal connectivity in the central nervous system, that 
takes in an input in the first layer, performs computations 
on the weighted inputs, applies activation functions in the 
hidden layer, and outputs a desired result in the final layer 
[30] . The connections between nodes and layers generates 
pattern recognition capabilities similar to those generated 
by neurons and synapses in animal brains.While ANNs are 
more powerful than logistic regression, they are also more 
costly in terms of computational demands [31]. Therefore, 
we used both methods to determine if there was a significant 
difference between the two approaches in this task.
Others have taken similar approaches to use machine 
learning to assess PD [7,21–23,32,33]. However, these 
studies have relied on symptoms of PD that appear later in 
the course of the disease, such as gait disturbances and 
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SUMMARY
	 Parkinson’s disease (PD) is the second 
most common neurodegenerative disease. Despite 
the prevalence of PD, diagnosing PD is expensive, 
requires specialized testing, and is often inaccurate. 
Moreover, diagnosis is often made late in the disease 
course when treatments are less effective. Since one 
of the earliest symptoms of PD are changes in voice 
patterns, we employed machine learning algorithms 
to detect these abnormalities. Using existing voice 
data from patients with PD and healthy controls, we 
created and trained two different algorithms: one using 
logistic regression and another employing an artificial 
neural network (ANN). The inputs for these algorithms 
were two statistical measures of voice patterns: Pitch 
Period Entropy (PPE) and Spread1. Both algorithms 
were successfully able to discriminate between PD 
patients and healthy controls with F2 scores > 0.93. 
Moreover, we found that the time from diagnosis 
had no impact on the performance of our models.  
Thus, we report the creation of two models that can 
reliably and accurately identify the voice patterns 
characteristic of PD. Our findings suggest that it is 
possible to diagnose PD by analyzing voice patterns, 
which would enable disease screening that is cheap, 
accessible, and accurate. 

INTRODUCTION
Parkinson’s disease (PD) is a neurodegenerative disease that 
is classically considered a motor disease but can impact the 
sensory and cognitive systems as well [1–7]. PD occurs when 
neurons in the brain die either via apoptosis (programmed 
cell death) or necrosis (unplanned cell death), which causes a 
decrease in dopamine, a neurotransmitter that is responsible 
for sending signals to other nerve cells, eventually leading 
to PD [8,9]. A number of factors contribute to the disease 
process including genetic predisposition, abnormal protein 
folding, oxidative stress, inflammation, and immune 
dysregulation [8,9]. Motor symptoms, especially tremors, 
usually present unilaterally with the left side involved more 
frequently than the right, but can spread bilaterally [10]. These 
symptoms arise because PD occurs due to a progressive 
degeneration of dopaminergic neurons [1,2,4–6,11]. Today 
the standard therapy is dopamine replacement therapy by 
administering the dopamine precursor, levodopa [3–5,12–
14]. However, because PD is often detected at later stages 
when over 80% of dopamine neurons have died, current 
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tremor. While there have been some studies done on the 
early detection of PD, most have used algorithms such as 
support vector machines and data mining, not artificial neural 
networks [7,21,24–28]. As far as we are aware, this is the first 
attempt to use an artificial neural network to identify changes 
in voice characteristics to assist in the diagnosis of PD. 

DISCUSSION
	 Here we report the development of two algorithms that 
were successfully able to discriminate the voice patterns 
of PD patients from healthy controls. Both the logistic 
regression and the artificial neural network (ANN) surpassed 
our success criteria (F2 > 0.87), and our analysis of the 
cost function indicates that the logistic regression was more 
accurate than the ANN. Moreover, the logistic regression had 
a specificity of 0.70 and a sensitivity of 0.95. Thus, while both 
algorithms were successful in identifying the voice patterns of 
PD patients, the ANN was more sensitive and had a higher F2 
score.
	 We also investigated whether the years since diagnosis 
of PD impacted the function of our logistic regression. We 
found that the number of false positives and false negatives 
were similar to our original analysis yet the model poorly 
discriminated between early and late PD. The model performed 
similarly in discriminating normal from either early or late PD. 
This suggests that disease progression did not impact the 
performance of either model. However, due to how the data 
were obtained, we could not control for how long patients 
were in treatment or whether their treatments impacted our 
model [20]. Since our algorithms are intended to diagnose PD 
and not necessarily to be used to follow disease progression, 
the impact of levodopa, other pharmacotherapies, deep brain 
stimulation, or other therapies are beyond the scope of this 
study.
	 Our results support reports from others that machine 
learning is a promising approach to diagnose PD [7,21–28]. 
However, as far as we are aware, this is the first use of an 
ANN to examine voice patterns to diagnose PD. Some 
researchers have used advanced algorithms to analyze non-
vocal data [31,32,39], and our success rate is similar. Others 
have examined vocal patterns using more traditional analyses 
[15,22,23,41], but logistic regressions and ANNs are generally 
preferable because of their ability for automated diagnosis, 
saving patients time and resources in early diagnosis. Thus, 
our data extend the field by employing machine learning 
algorithms to detect changes in vocal patterns.
	 This study demonstrates a relatively fast and inexpensive 
method for early stage detection of PD. Such a method can 
benefit patients as it may enable accurate diagnosis of PD at 
an earlier stage without expensive imaging [3,4,13,14,16,40]. 
Earlier diagnosis of PD may allow reevaluation of and improve 
the efficacy of therapies that have previously failed clinical 
trials due to use in late stage PD patients [11]. Furthermore, 
this method of detection can be administered remotely by 
using voice samples making it suitable for anybody around 

the world. This can be used as part of regular health checkup 
for populations susceptible to PD as this is both affordable 
and non-invasive. Once detected, a patient can then go 
through detailed clinical and physical diagnosis and start early 
treatment to reduce loss of valuable dopaminergic neurons.

MATERIALS AND METHODS
Data acquisition
	 Two voice parameters, Pitch Period Entropy and Spread 
1, were used as inputs to the algorithms in this study. These 
data were obtained using the Machine Learning Repository of 
University of California Irvine [20]. This dataset is composed 
of voice samples of 195 voice recordings from 31 people. The 
voice recordings are comprised of 19 male voices and 12 
female voices. The age varies from 46 to 81 with an average 
age of 66.  Out of 31 people, 23 have PD. The number of 
years since diagnosis with PD varies from 0 to 28 among the 
PD patients. 

Machine Learning Algorithms
	 Two major machine learning algorithms are used in 
this study: Logistic Regression and Artificial Neural network 
(ANN). A programing language called octave, similar to 
MATLAB, was used to implement these algorithms. Both 
algorithms were trained and tested using the acquired 
dataset. 60% of the data was randomly selected for training 
while the remaining 40% was reserved for testing. Spread 1 
and PPE data were loaded into a matrix, termed X, and the 
status data was loaded into a column vector called Y.

Logistic Regression
	 The logistic regression was trained on 60% of the data 
using the flow chart illustrated in Figure 1. The cost function 
was implemented by using a vectorized version of the cost 
function for Logistic Regression. Next, in order to use an 
optimization algorithm, the partial derivatives with respect to 
each of the features was computed. The partial derivatives 
were stored in a column vector. After implementing the cost  
function and the gradients, the fminunc algorithm (finding 
minimum of unconstrained multivariable function) was trained 
over 100 epochs to find the optimal coefficient values. This 
algorithm numerically optimizes a multivariable function , in 
this case, the cost function of logistic regression. Optimal 
coefficient values (stored in a matrix called θ) are listed in 
the result section. The data were then normalized using two 
different techniques: z-score normalization and simple feature 
scaling normalization. After normalization of the training data, 
the algorithm was trained again. After logistic regression was 
implemented, the model was used to classify the test dataset. 
Prediction was performed by rounding the probability values.
The decision boundary that separates the two classes is 
termed the hypothesis, which is determined by multivariate 
linear regression  also written as ).  



Journal of Emerging Investigators  •  www.emerginginvestigators.org 10 OCTOBER 2020 | VOL 2  |  3

Because probability values are always between 0 and 1, the 
output given by the hypothesis in multivariate linear regression 
needs to be constrained to output a value between 0 and 1. 
For this, the equation for multivariate linear regression is 
plugged into the logistic/sigmoid function, which is represented 
as:

	 If the value of g(bTx) is greater than or equal 0.5 then 
the binary classification will output a value of 1, representing 
a high likelihood to get PD. However, if the value of the 
binary classification is less than 0.5 then the output will be 0, 
representing a low likelihood to get PD. The coefficients of the 
hypothesis are the optimal values such that the cost function 
is minimized. The cost function for logistic regression [34] is 

Where m represents the amount of training examples, y, 
in this case, represents the status of the Patient (0 for not 
having PD, and 1 for having PD). hθ (x) represents the sigmoid 
function evaluated at a particular x value. 

Artificial Neural Network (ANN)

	 The cost function for the ANN was implemented using a 
for loop (representing the double summation) over all training 
examples classes (having PD and not having PD).

Taking this sum and plugging it into the sigmoid function 
produced the value of each activation in the network. z(n)

represented the activation values of the nth layer before 
plugging into the sigmoid function, while a(n) represented the 
actual (post-sigmoid) activations of the nth layer.
	 After the cost function was implemented, the 
backpropagation algorithm was implemented to compute the 
partial derivative with respect to each of the weights (θ ij). This 
was done by first feedforwarding the neural network using a 
random set of weights (this was done for symmetry breaking). 
Then for each training example, an error value was computed 
for each node and accumulated in the del one and del two 
matrices. Finally, separate gradient vectors for θ(1)and θ(2) 
were computed which were “unrolled” in a vector of partial 
derivatives, which was used in the optimization process along 
with the cost function.
	 As with logistic regression, the fminunc algorithm (with 
the gradient vector and cost function as inputs) was used to 
minimize the cost function and train the algorithm to compute 
the optimal values of the weights. The gradient vector was 
a column vector with the partial derivatives with respect to 
all the weight. It was calculated using a backpropagation 

algorithm and checked using Gradient checking (an algorithm 
that computes the partial derivatives numerically). 
	 First, we performed forward propagation to determine 
the values of all the activations in the network. Next, all the 
“error” values, represented as δ, were calculated as 

except for the last output layer. That layer was determined as 
the value of the last activation layer subtracted by the value of 
the actual output.
	 Next, an accumulation term, ∆, was used to accumulate 
each of the errors. After this, it can be shown that   for 
the bias terms, and  for all other terms. While there 
does exist a simpler formula for  when the regularization 
term is not accounted for (λ= 0) , this term helps prevent 
overfitting – a phenomenon which occurs when the model 
performes satisfactory with training data, but fails to generalize 
to test data – [35], which is of paramount importance in a 
neural network. This produced the gradient vector that was 
used as inputs to our optimization algorithm. After this the 
predict function was implemented by computing both 
activation values for each training example, and the largest 
one was the output.

Evaluation of Models
	 The predicted results are laid down against ground 
truth to evaluate each model so that True Positive (TP), True 
Negative (TN), False Positive (FP) and False Negative (FN) 
values are calculated (Table 1). The general formula for F 
score is

where precision is a function of TP and FP: precision = 
TP/(TP+FP); recall is a function of TP and FN: recall = TP/
(TP+FN); and specificity is a function of TN and FP: specificity 
= TN/(TN+FP). 
	 The algorithms were assessed based on their F2 scores. 
An F2 score is a weighted average of precision and recall and 
is used when minimizing the number of false negative cases 
is of greater importance than minimizing the number of false 
positive cases. The equation for F2 scores is as follows:

	 Algorithms were considered successful if F2 is greater 
than 0.87. This value was chosen because this algorithm is 
one of high recall, used when minimizing the amount of false-
negative cases are of greater importance than minimizing 
the amount of false-positive cases [36–38]. Moreover, this 
value has been used by other researchers to evaluate model 
success [39].

Differentiating between PD stages
	 The same models were created for PD stage 
differentiation. The data set was split into 2 stages based 
on the 4-year mark. This specific benchmark was used as it 
is a common benchmark for early and late stage diagnosis 

Figure 1: Logistic Regression Approach
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[40] . The split data set was evaluated based upon the earlier 
mentioned F2 score metric.

Normalization
	 Normalization is the process of converting data into a 
particular standard scale. This is done so that a data sample 
of a bigger range is not given additional preference solely due 
to its size. There exist three most commons forms of data 
normalization and standardization: Simple Feature scaling, 
z-scores and min-max normalization. Simple Feature scaling 
consist of converting the data set into values from 0 to 1. This 
is done of dividing each value in a column of a data set by 
the maximum value of the data set. If all the values are either 
strictly positive or negative then each example can be divided 
by the largest and smallest value respectively in the data set.
Z-score normalization (more formally written as z-score 
standardization) is a method of normalization wherein each 
training example is converted into its respective z-score. 
This in turn converts the data set into one with a mean of 0 
and a standard deviation of 1. This is done without changing 
the original shape distribution of the data set. The formula to 
calculate the z-score for a training example is given by the 
following equation: 
Where zi is the transformed value of the training example 

μ. epresents the mean of the data set and α represents the 
standard deviation of the data set.

Results 
	 We constructed two different models to diagnose PD using 
two measures of voice patterns: Spread1 and PPE. These 
data were obtained from the Machine Learning Repository 
of University of California Irvine [20]. Both algorithms were 
trained on a random sample of 60% of the dataset and tested 
on the remaining 40%.

Logistic Regression
	 The first algorithm we trained was a logistic regression. 
We first normalized the data by converting raw values into 
respective z-scores and then dividing by the largest absolute 
value. This algorithm also uses three coefficient values that 
are stored in a matrix called Theta (Table 2). Theta (1) has 
the constant value, Theta (2) has the coefficient values for 
Spread1 and Theta (3) has coefficient values for PPE. Using 
these values our logistic regression failed to pass the 0.87 
threshold on the training data. 
	 Therefore, we applied feature normalization to put 

Spread1 and PPE values in the same scale. This was done in 
two ways. Firstly, this was done by converting each number 
in a data set to its respective z-score , thus, normalizing the 
data set. In the second type of normalization, division, both 
data sets were divided by the highest absolute valued number 
in their respective data set. Then the absolute values of all 
numbers were taken after division. When the model was 
trained with the above normalized values, a different matrix 
for Theta was found (Table 2).

	 After these measures, prediction was performed with the 
test data and the algorithm achieved a F2 score of 0.93 (Table 
3). Within the 78 voice patterns tested, the logistic regression 
achieved a specificity of 0.70 and a sensitivity of 0.95. The 
calculated F2 score of 0.93 was well above our threshold 
of 0.87 and indicates that this algorithm could successfully 
discriminate PD voice patterns. This is evidenced by our 
receiver-operator curve (ROC; Figure 3), which shows high 
specificity over various threshold values.

Artificial Neural Network (ANN)
	 Initially, we implemented an ANN with one hidden layer. 
The ANN had two controllable matrices of weights (Theta), 
which were optimized using the fminunc algorithm and 
randomly initialized for symmetry breaking. After training, the 
model produced optimized weights (Figure 2). The result of 
ANN with one hidden layer is in table 3. 
	 The ANN with one hidden layer did not achieve the 
success criteria (Table 3). To make the model more accurate 
and robust, we added an additional hidden layer. This layer 
was comprised of 4 activation units and a bias unit, and 
forward and backward propagation were performed to train 
the algorithm producing different optimized weights (Figure 
4).
	 Using the ANN with two hidden layers, our model passed 
the success criteria on the test data achieving an F2 score 
of 0.94 (table 3). The sensitivity of this model was 0.96, 

Table 1: Describes the attribute of the confusion matrix 

Table 2: Theta Matrix for Logistic Regression

Figure 3: ROC Curve for Logistic Regression
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the specificity was 0.61 using 78 voice patterns. The ROC 
curve (Figure 5) demonstrates high specificity over various 
threshold values.

Differentiating between PD stages
	 PD is a neurodegenerative disease with multiple stages 
[2,4,5,7,12,14,16,36]. Therefore, we wanted to determine 
if the length of PD diagnosis had an impact on our model’s 
performance. Patients with PD typically exhibit a response 
to L-DOPA therapy, as well as L-DOPA induced dyskinesias, 
within four years of diagnosis [40]. Moreover, the earliest that 

patients reached stage three of the disease was at 4 years [40], 
suggesting that a 4-year cutoff would differentiate early PD 
from late PD. Additionally, there are other neurodegenerative 
diseases, that while similar to PD in presentation, exhibit poor 
responses to L-DOPA (e.g. progressive supranuclear palsy, 
corticobasal degeneration) that are typically identified by this 
point in time [11]. Therefore, we divided patients into groups 
who had a PD diagnosis for less than 4 years or more than 4 
years to determine if our results were confounded by disease 
stage.

	 We examined whether the logistic regression (used 
above) would perform differently on this divided dataset. 
The amount of true positive and false positive cases in the 
result for the test case when the algorithm was run was 
approximately the same. When the Logistic Regression was 
run to distinguish between the 65 PD patients who are below 
4 years and above 4 years since diagnosis, with 49.2 % true 
positive, 47.7% false positive, 1.5% true negative and 1.5 
%false negative were observed.  This suggests that PPE and 
Spread1 are robust indicators and consistent indicators of PD 
and that our models were not impacted by the stage of PD. 
However, because there was little variability in these voice 
metrics, the logistic regression classifier performed poorly in 
identifying early PD from late PD (approximately 50% training 
accuracy, in this case). In other words, PPE and Spread1 
values do not change significantly over time. Thus, this lack 
of variability means that the earlier stated algorithms can be 
used for detection at early stages. 
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