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Introduction
Pancreatic cancer is the fourth leading cause of 

cancer-related deaths in humans, with an average five-
year survival rate of 6% (1). According to the American 
Cancer Society, approximately 45,220 people will die 
from pancreatic cancer in 2013 alone (1). Pancreatic 
adenocarcinoma, like many other cancers, occurs 
because of the over-expression of oncogenes (i.e., genes 
that cause cancers), the inactivation of tumor suppressor 
genes, and the deregulation of various signaling proteins 
(2). A number of abnormalities in protein pathways cause 
the changes in cells that lead to pancreatic cancer and 
tumor growth (3).

Research is often focused on inhibiting proteins that 
are over-expressed in pancreatic cancer cells (39, 40). 
However, this approach results in some problems. First, 
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Summary
Pancreatic cancer is the fourth leading cause of cancer-
related deaths in humans (ASCO 2012). Pancreatic cancer 
cells exhibit a different gene expression profile from 
normal cells, with approximately 122 over-expressed 
proteins. A novel method was created to find the most 
important areas for future drug development based on 
influential disease-causing proteins in pancreatic cancer 
that currently lack drug treatments.
Protein-protein interaction maps were created, and 
proteins were ranked based on the number of connections 
each protein exhibited. A protein-drug interaction 
map was then constructed to analyze which influential 
proteins have no drugs developed for them or that have 
a very low drug association level. Afterward, the proteins 
were graphically and mathematically profiled to further 
determine which proteins are necessary for immediate 
research.
Through this method, KRAS, CDKN2A, and RBBP8 
were found to be important proteins that lacked drug 
treatments. By comparing the chemical structure of KRAS 
to similar chemical structures of other GTPase enzymes 
and proteins with Walker A motifs, potential drugs were 
found that could inhibit KRAS and significantly slow the 
advancement of pancreatic tumors. This approach is 
applicable to several other types of cancers, such as renal 
cell carcinoma, melanoma, and prostate cancer.

Figure 1. A protein-protein interaction map of pathway starters for pancreatic cancer. Each protein is represented by a 
labeled circle or node. Line connections between the proteins represent protein-protein interactions and are drawn if the two 
proteins bind together to carry out a common function. Made using the STRING database (14).
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an over-expressed protein may be just a biomarker that 
may not cause the tumor to grow (4). A biomarker is “a 
biological molecule found in blood, other body fluids, or 
tissues that is a sign of a normal or abnormal process, 
or other condition or disease” (5). Also, there are around 
122 over-expressed proteins in pancreatic cancer, and 
some are more important than others in causing tumor 
growth (6). Focusing on so many proteins can have 
negative effects on drug development and success. 
Current medicines for pancreatic cancer, such as 
Gemcitabine and Abraxane, extend the life expectancy 
of patients by about 8.5 months (7). But they cost around 
$6000 to $8000 per month and cause considerable 
nerve damage (7).

The authors propose a novel method for finding the 
most important proteins in pancreatic cancer for future 
drug research using protein-protein interactions (PPIs). 
PPIs occur when two or more proteins bind together to 
carry out their biological function and are important in 
signal transduction pathways inside the cell (8). A PPI 
map depicts these various interactions by creating a 
node on the graph for each protein and connecting the 
two nodes with an edge if the proteins interact physically. 
Some examples of PPI maps are shown in Figures 1, 
6, 7, and 8. By constructing PPI maps with the proteins 
involved in pancreatic cancer, one can determine the 
relative amount of influence a protein has in pancreatic 
cancer protein pathways and thus its importance as a 
drug target. In the same way that an entrepreneur tries to 
market to the person with the most friends since they have 
the greatest influence in their network of acquaintances 
(9), the proteins with the highest degree of connections 
should be targeted for future drug research because 
they interact with the greatest number of cancer-causing 
pathways.

Afterward, another interaction map can be constructed 
between these proteins and the drugs currently available 
on the market to inhibit them to find gaps in current drug 
development. Factors of importance pertaining to a 
protein, such as the number of PPIs and the percent of 
other diseases that display a mutation in that protein, can 
be used to create a heat map. A heat map is a visualization 
for a matrix that shows a correlation between a protein 
and a factor by color, with higher correlations depicted by 
using darker colors. Examples of heat maps are shown 
in Figures 2 and 3.

We propose that the novel approach of interaction 

maps can be used to integrate disparate databases to 
find important drug targets in pancreatic cancer based 
on disease-causing proteins that currently lack effective 
drugs. The authors found that KRAS, CDKN2A, RBBP8, 
and ACVR1B are proteins in the pancreatic cancer 
network that currently lack FDA-approved drugs. KRAS, 
CDKN2A, and TP53 were found to be the three most 
important mutations in pancreatic cancer, which is also 
true according to the Sanger COSMIC database; this 
correlation supports the presented approach and data 
(10). 

The authors then applied this methodology to 
melanoma, renal cell carcinoma, and prostate cancer, all 
of which have been successfully treated by drug therapy. 
In each case, the inhibition of the protein with the most 
PPIs in its cancer network significantly slowed tumor 
growth. Either this protein was targeted directly by an 
end drug as with prostate cancer, or the protein targeted 
had a high confidence interaction (confidence > 0.95) 
to the most important protein in the cancerous network. 
This step both validated the authors’ hypothesis and 
illustrated the potential application of this methodology to 
other cancers to develop successful cancer medication 
in a more time-effective manner.

In the third stage, KRAS was determined to be the 
most important protein among the four proteins lacking 
drugs in pancreatic cancer since, according to The 
Kyoto Encyclopedia of Genes and Genomes (KEGG), 
a KRAS mutation starts the pancreatic cancer pathway 
that inhibits apoptosis in tumor cells. This mutation is 
present in 90% of tumors (11) and has been linked with 
increased resistance to pancreatic cancer medication. 
KRAS is a member of the RAS family, one of the most 
frequently mutated classes of oncogenes in pancreatic 
cancer (12). The presence of RAS, a type of GTPase 
protein, in human cancers was discovered in 1982 
(12). This discovery spurred research into the chemical 
structure of RAS, which lead to the discovery that small 
GTPases regulate almost all cellular processes (12). 
Eighty-five percent of all RAS mutations are in KRAS, 
and these occur most often at codons 12, 13, and 61(12). 
Since binding directly to the GTPase protein has not 
been successful, researchers have focused on inhibiting 
the downstream effectors of KRAS, such as RAF, MEK, 
ERK, and PI3K. However, since RAS does not rely 
solely on the MAP signaling pathway, which contains 
the effectors that are currently targeted, blocking it by 

Figure 2: A data table for protein importance factors for the heat map shown in Figure 3. The data has been normalized 
by mean normalization (i.e., subtracting the mean for each factor from the value for that factor and dividing by the range).
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inhibiting its downstream effectors has not proved 
successful (12). Thus, concurrent blocking of two or 
more pathways downstream of KRAS will be needed. 
The authors studied the chemical structure of KRAS 
and drugs that inhibit proteins with a similar structure 
to KRAS. Through this method, Tipifarnib, Lonafarnib, 
Clonodine, and three other drugs with a similar chemical 
structure to Clonodine were determined to be likely to 
inhibit KRAS and thus merit future testing.

Results
A PPI map was created for pancreatic cancer proteins 

whose mutations lead to changes in protein pathways 
causing cancer (KEGG). Additional mutated proteins 
were found from the database Diseasome, which depicts 
gene-cancer interactions by mapping diseases to the 
genes whose differential expression are associated with 
the disease (13). The interaction map of 10 proteins from 
KEGG and Diseasome is shown in Figure 1. 

Additional data on how likely a protein is to be 
important in pancreatic tumor growth was collected 
through database and literature mining and condensed 
into the table shown in Figure 2 (11, 14-20). A heat map 
was created for the pancreatic cancer proteins based on 
various parameters outlined in the methods section and 
summarized in Figures 2, 3 , and 4 . The heat map was 
used to predict the likelihood that a protein was important 
in the pancreatic cancer pathway; proteins TP53, KRAS, 
and CDKN2A were determined to be proteins with a high 
degree of importance in their protein pathways. 

A corresponding heat map of existing FDA-approved 
drugs for these proteins and the effectiveness of the 
existing drugs was created from data collected from the 
Connectivity Maps (Cmaps) database (21). This map 
investigated the effectiveness of existing drugs for a 
protein. If a protein has a high degree of drug development, 
then further drug development is not needed as urgently 
for that protein. Each entry in the Cmaps database that 
states that a particular drug targets cells with a mutation 
in a certain protein has been designated a “protein-
drug interaction.” Each such interaction is supported by 
a number of articles, and the number of protein-drug 
interactions per protein is mapped in Figure 4. The 

Figure 3: A heat map of factors in protein importance, 
with protein pathway starters in pancreatic cancer. 
Data for protein-protein interactions was retrieved from 
STRING (14). (1) Primary PPI-Pathway Starters: how 
many primary PPIs the protein had with the ten other proteins 
on this list and in Figure 1. (2) Primary PPI- General 
Pancreatic Cancer Proteins: how many interactions a 
protein had with all other proteins involved in pancreatic 
cancer rather than just the protein pathway starters shown 
in Figure 1. (3) Secondary PPI- Pathway Starters: how 
many PPIs those proteins that the initial protein connected 
with had with other proteins. (4) % Tumors Mutated In: the 
percentage of malignant pancreatic tumors that display a 
mutation in that protein. (5) # Mutations in Tumors: the 
number of different mutations for this protein that can occur 
in tumors. (6) # Other Diseases Protein Mutated In: the 
number of other diseases this protein is mutated in. Darker 
shades of red indicate higher values for that factor. Higher 
values for these factors indicate an increased chance 
that a protein will be important in the pancreatic cancer 
network, and thus there is a greater need for focused drug 
research. So that # Other Diseases Protein Mutated In, 
which ranges from 1-6, would be on the same scale as 
% Tumors Mutated In, which ranges from 1-100, and the 
other factors, the mean was calculated for each factor and 
subtracted from each value, and the resulting number was 
divided by the range of values for that factor. The resulting 
table is shown in Figure 10 and was used to create this 
heat map.

Figure 4: A bar graph showing ten protein pathway 
starters and proteins produced by disease genes 
in pancreatic cancer, with the number of drugs and 
average association on the y-axis and the protein on 
the x-axis. Each entry in the Connectivity Maps database 
that states a particular drug that targets cells with 
mutations in a certain protein is considered a “protein-
drug interaction.” The blue bars represent the number of 
protein-drug interactions, and the orange bars represent 
the average association of the drug with the protein. Drug 
Association refers to how effective the drug is in targeting 
cells with a mutation in that protein and thus inhibiting the 
effects of the protein. Thus, the average drug association is 
the sum of the associations for all protein-drug interactions 
divided by the number of protein-drug interactions for a 
particular protein.



4Feb 4, 2014Journal of Emerging Investigators

     Journal of
Emerging Investigators

average number of evidential articles was also recorded 
for all drugs for a particular protein. How effectively or 
to what degree a drug targeted cells with a particular 
protein mutation is referred to in Cmaps and in this 
paper as the drug’s “association” with the protein. The 
completed, normalized table of these factors is shown in 
Figure 5, and the heat map is shown in Figure 6.

The two heat maps were then compared to find 
proteins for which future drug therapy is needed 
(Figure 3) and to determine which current drugs are 
most effective (Figure 6). Out of the ten proteins from 
KEGG and Diseasome that initiated protein pathways in 
pancreatic cancer, four had no known drug and three 
had drugs with an average association lower than 1.96. 
An average association level of 1.96 was observed for 
all drug-protein interactions for the studied proteins 
in pancreatic cancer; thus, an association above 1.96 
meant that the drug-protein association and drug 
effectiveness was above average. Successful drugs 
for other diseases usually have an association above 
1.96 (21). By analyzing this data, the authors found that 
KRAS, CDNK2A, RBBP8, and ACVR1B all lack effective 
drug treatments. Although a mutation in ARMET/MANF 
is characteristic of some pancreatic cancer patients, 
ARMET/MANF is shown to be the protein least likely 
to be important in pancreatic tumor growth of those 
proteins examined based on PPIs; yet, it has six drugs 
associated with inhibiting it. On the other hand, KRAS 
is a protein with more PPIs than ARMET/MANF, is 
found more frequently in tumors, exhibits a number 
of mutations in cancers, and begins the PI3K-AKT 
pathway in pancreatic cancer; however, it has no drug 
associated with inhibiting it. The PI3K-AKT signaling 
pathway regulates transcription, translation, growth, and 
proliferation of the cell and is activated by the mutation 
of the gene K-RAS (22). Out of the 15 proteins from the 
KEGG, Diseasome, and drug databases that were shown 
to be most important in pancreatic cancer pathways, five 
had no known drug, and four had drugs with extremely 
low association scores. STK11, ARMET, SMAD4, and 
ERBB2 had drugs with an average association of less 
than two. ERBB2, whose over-expression is strongly 
linked with cancer recurrence (23), is identified as one of 
the two primary oncogenes in pancreatic cancer, along 

with KRAS. Figure 4 shows that ERBB2 activates TP53, 
the most influential of the cancer genes, and yet has 
only four available drugs to inhibit it and the third lowest 
average association score. Drug development is further 
needed in this area.

According to the protein-drug interaction map in Figure 
7, the most effective drug is Methyl Methanesulfonate 
(MMS) when taking into account association and the 

Figure 5: An unscaled data table for the heat map of 
drug factors, which is shown in Figure 3. The data has 
been normalized by mean normalization (i.e., subtracting 
the mean for each factor from the value for that factor and 
dividing by the range).

Figure 6: A heat map of drug-related factors for 
protein-pathway starters in pancreatic cancer. Each 
entry in the Connectivity Maps database that states a 
particular drug targets cells with a mutation in a certain 
protein is considered a “protein-drug interaction.” (1) # 
Drugs Available: how many protein-drug interactions a 
particular protein has in the Cmaps database. (2) Drug 
Association refers to how effective the drug is in targeting 
cells with a mutation in that protein and thus inhibiting 
the effects of the protein. Thus, the Average Drug 
Association is the sum of the associations for all protein-
drug interactions divided by the number of protein-drug 
interactions for a particular protein. (3) Each protein-drug 
interaction is supported by a number of research papers 
from PubMed; thus, # Evidential Articles (Av) is the 
average number of evidential articles supporting each 
protein-drug interaction. Darker shades of green indicate 
higher values. Lower values indicate a greater need for 
further research and drug development since mutations of 
the proteins at the bottom of the heat map are targeted by 
numerous effective drugs, whereas mutations of those at 
the top are not. So that Average Drug Association, which 
ranges from 0-1, would be on the same scale as # Drugs 
Available, which ranges from 1-6, and # Evidential Articles, 
the mean was calculated for each factor and subtracted 
from each value for that factor, and the resulting value was 
divided by the range of values for that factor. The resulting 
table is shown in Figure 9 and was used to create this 
heat map.
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number of proteins inhibited. Association between a 
drug and protein refers to how effectively a drug targets 
cells with mutations in that protein. MMS targeted cells 
with mutations in BRCA2, BRCA1, ARMET, RAD51, 
and ATM. All of these proteins, with the exception of 
ARMET, had many PPIs. MMS proved very effective in 
eliminating cells with mutations of these closely related 
proteins, but not effective for other proteins less closely 
related. It causes hyperacetylation of cytoplasmic and 
nuclear proteins, a process directly leading to the cell 
death pathway (24). Cancer cells show increased 
susceptibility to MMS. However, MMS also can act as a 
carcinogen by increasing the risk of secondary cancers 
(25). Mitomycin is the second most effective drug from 
the drugs mapped and is used in a variety of cancers 
after chemotherapy as a further attack against cancer 
cells. However, prolonged use can cause significant 
nerve damage and has exhibited carcinogenic activity 
in rats (24).

When studying the chemical structure of KRAS, the 
authors found that KRAS is a member of the P-loop 
NTPase domain superfamily, a member of the RAS 
subfamily, and associated with GTPase because it 
contains the Walker A motif (26). Through literature 
mining, the authors found that Lonafarnib has the 
potential to inhibit KRAS in clinical trials (27). Therefore, 
drugs closely related to Lonafarnib also have a higher 
chance of inhibiting KRAS. Lonafarnib is a member of 
the Farnesyltransferase inhibitor family of drugs, which, 
by targeting Farnesyltransferase, prevents the addition 
of a farnesyl group to KRAS and thus prevents KRAS 
from embedding in the cellular membrane and carrying 

out its function (28). The drug Tipifarnib belongs to the 
same class of drugs, and shares a maximum common 
substructure of 14 with Lonafarnib (29). Maximum 
common substructure (MCS) refers to the length of the 
largest substructure present in both molecules, and 
chemical structures with a larger MCS have similar 
functions (30). KRAS has a small-molecule binding 
pocket between its Helix Alpha 2 and core beta sheet, 
which can fit a chloro and benzine group. Clonodine/
DCAI can bind to this pocket and inhibit KRAS (31). 
Using PubChem, Clonodine’s molecular structure was 
studied, and other chemical compounds were clustered 
based on their structural similarity to DCAI. The three 
drugs with chemical structure most similar to DCAI were 
CN5710355, CID12699319, and CID12699317 (32). 
These three chemicals also have a higher likelihood 
of binding to the KRAS binding pocket and preventing 
KRAS from carrying out its function in cancer.

To validate the hypothesis that PPI maps can be used 
to find important proteins that lack drug development 
within a cancer network, the authors then studied 
the protein pathways of prostate cancer, melanoma, 
and renal cell carcinoma. All of these cancers have 
been treated with drug therapy with some measure of 
success; Enzalutamide has reduced serum levels of the 
biomarker prostate specific antigen by greater than 50% 
by targeting the androgen-specific receptor protein AR 
(33). The FDA has approved the BRAF inhibiting drug 
Vemurafenib, and CDK4 inhibitors are in clinical trials to 
treat patients with advanced metastatic melanoma (34). 
Everolimus is used to inhibit the mTOR signaling pathway 
in renal cell carcinoma (RCC). As mTOR activates 

Figure 7: A Drug Effectiveness Map for the set of ten proteins whose mutations lead to cancerous protein pathways, 
both with and without already developed drugs. Connections between a drug and protein are created if the drug and 
protein have a “protein-drug interaction” recorded in the Cmaps database. Edge thickness between the drugs and proteins 
indicate the association of the protein-drug interaction. Drug Association refers to how effective the drug is in targeting cells 
with a mutation in that protein and thus inhibiting the effects of the protein.  The proteins are indicated by red nodes (circles) 
and the drugs by yellow in order to distinguish them. Node size corresponds to the number of connections each protein/drug 
has. Green Edges/Connections correspond to an association > 1.98, the mean association level. 
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VEGF, which is critical in the RCC network, Everolimus 
is an effective treatment for RCC (35). The proteins that 
begin protein-pathways in these cancers were mapped 
in STRING (a database of known and predicted protein 
protein interactions) and their interactions examined. 
The PPI maps for prostate cancer, melanoma, and 
renal cell carcinoma appear in Figure 8A-C. Applying 
PPI networks can explain why these drug therapies 
have been a success, and PPI networks can be used 
in the future to develop effective medicines for targeted 
therapies of cancer.

Discussion
The use of PPIs as a method of finding the most 

important proteins in cancer was validated when the 
authors applied the approach to cancers such as 
melanoma, prostate cancer, and renal cell carcinoma, 
all of which have been successfully treated by targeted 
drug therapy. In the experiment, a “high-confidence” 
interaction is taken to be an interaction with a confidence 
score above 0.95, which is based on experimental 
data, how close the two genes are that produce the 
proteins, and other factors used to predict confidence 
by STRING. The authors found that successful targeted 
therapy seems to have two main trends; either the 
protein targeted has a high number of primary PPIs with 
pathway starters, as in the case of CDK4 or AR, or the 
protein targeted has a high-confidence interaction with 
the protein most influential in its cancer network. For 
example, VEGF has the greatest number of primary PPIs 
with pathway starters in renal cell carcinoma, but when 
the PPI network is re-centered on VEGF, then mTOR is 
shown to bind to and inhibit VEGF with a confidence level 
of 0.947 (14). The high degree of VEGF in the renal cell 
carcinoma network is illustrated in Figure 8C, and the 
interaction map of VEGF is shown in Figure 9, with the 
mTOR-VEGF interaction highlighted. Similarly, BRAF, 
the target of anti-melanoma drug Venurafenib, interacts 
with NRAS with a confidence level of 0.975; NRAS has 
four primary PPIs with pathway starters in its network, the 
highest level of any pathway starter for prostate cancer. 
Thus, centrality in cancerous networks, determined by 
PPIs, can be effectively used to find targeted therapy 
options for a variety of cancers in a more time-effective 
manner. As shown in Figure 10, the targeted proteins for 
melanoma and prostate cancer share a very high number 
of PPIs, a high percentage of tumors they occur in, and 
have drugs with a high average association. Since KRAS 
has a high number of protein-protein interactions and 
percentage of tumors it occurs in, its need for immediate 
drug development is increased.

PPI maps, heat maps, and the approaches outlined 
above can help bring attention to new drug targets, as 
well as rank these drug targets for how much influence 
they are likely to have in their cancerous pathways. 
However, researchers should also consider how easy 
the protein is to target with chemical compounds, or 
its “druggability.” Some factors in druggability include 
the protein’s structure, how likely it is to mutate, 
clinical toxicity, and resistance mechanisms. KRAS, in 

Figure 8: PPI networks in cancer. A. A PPI network 
for protein pathway starters in prostate cancer. The 
inhibition of the protein AR has reduced tumor growth in 
prostate cancer. B. A PPI network for protein-pathway 
starters in melanoma. The inhibition of the protein BRAF 
has reduced tumor growth in melanoma. BRAF interacts 
with a high confidence level to NRAS, which has one of 
the greatest numbers of PPIs in the melanoma network.C. 
A PPI network for protein pathway starters in renal 
cell carcinoma. The inhibition of the protein mTOR has 
reduced tumor growth in renal cell carcinoma. mTOR is not 
of primary importance in the renal cell carcinoma  network, 
but interacts with high confidence to VEGF, which has 
one of the greatest number of PPIs in its network. These 
network was made using STRING. The thickness in the 
connection line corresponds to the confidence level for the 
interaction based on co-expression, literature mining, high 
throughput experiments, etc.

A

B

C
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particular, has proved very difficult to target despite the 
amount of research that has gone into it. About 40% 
of KRAS-mutant colorectal cancers are genetically 
heterogeneous, so generic drug development is difficult. 
KRAS functions by GTP binding, which researchers 
have found extremely difficult to inhibit (17).

Future research should focus on identifying amino 
acid sequences that are homologous among multiple 
GTPase enzymes and associated with multiple types of 
cancer. In addition, there is a need to identify proteins 
with structures and amino acid sequences similar to 
KRAS. By finding proteins with amino acid sequences 
homologous to those of KRAS, researchers should be 
able to identify classes of drugs that inhibited proteins 
similar to KRAS and that could be used to inhibit 
KRAS itself. In the future, research should also focus 
on testing drugs that are effective on other members 
of the P-loop NTPase domain superfamily, of the RAS 
subfamily, associated with GTPase, and containing 
the Walker A motif. The drugs isolated in this study, 
Lonafarnib, Tipifarnib, CN5710355, CID12699319, 
and CID12699317, should also be tested because they 
have a greater chance of inhibiting KRAS effectively. 
Also, KRAS can be targeted like VEGF was in renal cell 

carcinoma: by designing drugs for another protein that 
has a high confidence interaction to KRAS and a higher 
“druggability” than KRAS.

In future work, the authors would also create a 
separate factor for the strength of a protein-protein 
interaction and confidence level with which that PPI is 
stated when ranking proteins by potential effect in their 
cancerous networks. After all, a protein with many weak 
interactions that are not necessarily well-supported may 
not be as likely to be important in a cancerous network as 
a protein with a few strong, well-supported interactions. 
Research should also be conducted on whether a 
protein that has many primary interactions with other 
proteins but few secondary interactions is more likely to 
be important in a cancerous network than proteins with 
few primary interactions but many secondary reactions, 
such as KRAS. For example, if protein X interacts with 
protein Y but protein Y interacts with five other proteins 
downstream, and protein Z interacts with three proteins 
but those proteins only interact with one other protein 
downstream, which protein is likely to be more important 
in its cancerous network? Further research is needed 
to address these questions on PPI maps. Interaction 
maps can elucidate new drug targets in cancer, allow 

Figure 9: The interaction between mTOR and VEGF, with the PPI network centered on VEGF.
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researchers to prioritize proteins for future research, 
and should be incorporated into the drug development 
process.

Methods
Creating a set of proteins whose protein-protein 
interactions should be examined

Using the KEGG database, the authors added the 
seventy proteins listed on the database as involved 
in pancreatic cancer pathways to the set of proteins 
whose PPIs were to be studied. Additional candidates 
for important disease-causing proteins produced by 
mutated genes were found at http://www.diseasome.
ed/. Diseasome depicts gene-cancer interactions by 
mapping diseases to the genes whose mutations or 
differential expressions are associated with causing the 
disease (13). The proteins from KEGG and Diseasome 
were mapped using the STRING Database. In STRING, 
PPIs are predicted based on the following: 1) how close 
the two genes that produce that protein are on the 
chromosome, 2) their conservation in other species, 
3) if the two proteins are expressed together, 4) high 
throughput experiments, 5) database mining, and 6) text 
mining. In this stage of the experiment, text mining was 
disabled. When text mining is counted as evidence, two 
proteins are considered to interact if they are mentioned 
together in PubMed abstracts. Conservation in other 
species is taken into account because proteins that 
are “functional partners” and thus interact often are 
expressed in the same species (14). The PPI map was 
examined to gain a rough idea of which proteins are 
most influential. Proteins with the greatest number of 
connections to other proteins, or greatest degree, will 
have a greater degree of influence in cancerous protein 

pathways. The “degree” of a protein refers to how many 
other proteins it interacts with, or how many outgoing 
links it has. With a PPI map of 80 proteins, however, the 
degrees of the individual proteins are much more difficult 
to determine. Thus, the 6 proteins that began protein-
pathways in pancreatic cancer, according to KEGG, 
were isolated from the previous set of 70 proteins, 
and mapped separately using STRING along with the 
disease-causing proteins found from Diseasome, and 
each protein’s degree was recorded.

Studying the Protein-Protein Interaction Maps
PPIs were classified as either primary with pathway 

starters, primary with all other proteins involved in 
pancreatic cancer or secondary with pathway starters. 
Let an arbitrary protein be taken as protein X. If protein 
X interacts and binds with protein Y, then the interaction 
between X and Y was classified as primary. If Y was one 
of the ten proteins that started cancerous pathways or 
was a disease gene from Diseasome, then the interaction 
was further classified as primary with other pathway 
starters. If Y was simply an arbitrary protein involved in 
the pancreatic cancer network, the interaction between 
X and Y was classified as primary with general proteins. 
However, if protein X binds to protein Y, and protein Y 
further binds to protein Z, then the interaction between 
X and Z was classified as secondary. Secondary 
interactions were only mapped with pathway starters 
from KEGG and Diseasome.

Finding proteins for which drug development is needed 
through Drug-Protein Interaction Maps

The set of protein-pathway starters and proteins 
produced by disease genes was then compared against 
the list of proteins that have existing drug treatment 
options to see where future development is needed. 
This was done by visiting the database Cmaps, which 
links diseases to the proteins that cause them and the 
proteins to drugs that target cells with a mutation of that 
particular protein (21). Connectivity maps only displays 
proteins with drugs that target cells with that particular 
protein mutation. The set of ten proteins found from 
Diseasome and KEGG was searched and downloaded, 
and the number of drugs for each protein was recorded.

A drug-protein interaction map was then created 
using Gephi (36) to determine areas where drug 
development is lacking, and the effectiveness of current 
drug therapy options. A graph was created with a red 
node for each protein from the data set from Kegg and 
Diseasome, as well as the ten most important proteins 
with existing drugs from the Cmaps database. A yellow 
node for each drug found in the file downloaded from 
Cmaps was created. A new edge was created for each 
drug-protein interaction from Cmaps, where at least 
three evidential articles supported the effect of the drug 
on the protein. An edge weight was assigned for each 
edge based on the association level between the drug 
and protein shown in Cmaps. Association refers to how 
well the drug is able to inhibit the protein. The edges 
with an association > 1.98 (average association) were 

Figure 10: A Radar Chart depicting mTOR, BRAF, and 
AR. Inhibition of these proteins in renal cell carcinoma, 
melanoma, and prostate cancer, respectively, significantly 
reduced tumor growth (33, 34, 35), the percentage of 
tumors this protein was mutated in, the number of protein-
protein interactions it had within its network, the number of 
drugs that inhibited it, and the average association of those 
drugs. KRAS is shown in green for pancreatic cancer, and 
its high value for PPIs and Percentage of Tumors, as well 
as its low values (0, 0) for the number of drugs and average 
association, exhibit how future research is needed for this 
protein. Feature normalization has been performed for 
each factor.
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assigned the color green. This map consolidates the data 
collected from Cmaps and KEGG to show which proteins 
lack drugs. One can easily examine which proteins from 
this set are the most necessary for drug development. 
Drug need can also be examined by the creation of a bar 
chart with the protein on the x-axis and the number of 
drugs on the y-axis, as shown in Figure 4.

Creating Heat Maps to rank proteins based on importance 
as potential drug targets

	 Heat maps can be used as a tool to sort proteins 
based on a number of factors in a qualitative manner, 
where each column represents a factor and each row 
represents a protein. A high value for that factor is 
represented by a darker shade (37). The first factor 
examined was the number of PPIs with pathway starters. 
The second factor examined is the number of primary 
PPIs with all proteins involved in pancreatic cancer. 
Let protein X again be an arbitrary protein that begins 
a pathway in pancreatic cancer. Protein X’s interactions 
with one hundred other proteins was mapped through 
STRING, and the data filtered to include only protein 
X’s interactions with other proteins that were involved in 
pancreatic cancer, out of those one hundred proteins. 
The third factor examined was the number of secondary 
PPIs with pathway starters for each protein. The authors 
performed a literature review of PubMed and PNAS to 
find articles stating the percentage of pancreatic tumors 
each protein was mutated in and the number of mutations 
of that protein that occur in cancerous tumors (11, 15-20). 
These two factors were also examined in the heat map. 
The final factor was the number of other diseases this 
protein is involved in, as recorded in the KEGG database 
(20). Feature normalization was performed by scaling the 
columns in each data table so that a high value on the 
mutation score is in the same range as a high value on 
the PPIs. Each value for a particular feature was divided 
by the range of that feature. The completed table is 
illustrated in Figure 2.

Another excel spreadsheet was created with the 
number of drugs per protein and average association 
for all drugs with that protein. We called each entry in 
the Cmaps database that states that a particular drug 
inhibits a certain protein a “protein-drug interaction.” 
Each protein-drug interaction is supported by a number 
of evidential articles. The number of evidential articles 
was summed for a protein’s protein-drug interactions 
and divided by the number of protein-drug interactions 
to create the average number of evidential articles. A 
high amount of scientific support for a protein’s protein-
drug interactions paired with a high association level for 
those protein-drug interactions indicates that a protein 
has less need for immediate drug development. Feature 
normalization was again performed on these three factors, 
and the completed, normalized table is shown in Figure 
5 . With the use of GiTools, two heat maps were created; 
one examined factors contributing to protein importance 
within pancreatic cancer, and the other examined how 
much research has already taken place for that protein to 
find gaps in drug therapy.

Filling Existing Gaps in Drug Therapy by focusing on 
KRAS

The authors then aimed to fill existing gaps in drug 
therapy by determining which amino acid sequences 
were important to KRAS, the highest ranked protein 
that lacked drugs. In the NCBI Database (38), RAS was 
searched for under “Conserved Domains.” Using the first 
result, possible proteins were predicted that might share 
homologous sequences with KRAS. Lonafarnib, a member 
of the Farnesyltransferase inhibitor drug family, has been 
shown to inhibit KRAS in clinical trials (28). The structure 
of Tipifarnib, another Farnesyltransferase inhibitor, was 
compared to Lonafarnib using the ChemMine toolbox. 
Tipifarnib and Lonafarnib share a maximum common 
substructure of length 14 (29). Greater maximum common 
substructure implies greater similarity between the drugs 
in both structure and function (30). Thus, Tipifarnib should 
also be tested on KRAS. The binding pockets found in 
KRAS were then searched to find small molecule ligands 
that may bind there to inhibit KRAS.
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