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content may consequently cause mental illnesses such as 
depression, even pushing people toward suicide, highlighting 
the need for an improved system to mitigate hate speech 
(HS) – language that some may find offensive – and promote 
clean speech – language that is not considered offensive – on 
the Internet (3). As a result, social media platforms attempt 
to combat this rising problem with HS detection software. 
These platforms utilize artificial intelligence with the aim of 
identifying social media posts that contain HS. However, 
the classification process does not adapt well to the speech 
of different cultures and their specific distinctions between 
HS and clean speech. For example, certain slang may be 
considered clean when said within a culture, however, it may 
be considered HS when those outside that culture use it. 
This distinction between HS and clean speech proves to be 
essential when mitigating the apparent cultural bias in current 
HS detection.
	 HS detection software is created using supervised machine 
learning (ML) models which involves the process of training 
a model on previous data to predict future classifications 
(4). Like humans, computers require information in the form 
of a training dataset to learn patterns from, akin to a study 
guide. However, they are still vulnerable to bias. If a system 
is presented with a biased training dataset, the model may 
falsely flag content by certain groups as hateful or may not 
flag hateful content by some groups as HS (5,6). These 
biases originate from various sources of the ML process but 
are all related to the training datasets. Any bias present is 
taught to the ML algorithm, and its performance reflects these 
biases. For instance, due to the current method of training HS 
detection algorithms, phrases in African American English 
(AAE) were twice as likely to be labeled as more hateful than 
phrases in other dialects despite it being considered clean 
by AAE speakers (7). This illustrates that the idea of HS has 
strong cultural implications, so for individuals, depending on 
one’s cultural views, a phrase may be interpreted as hateful, 
however current models struggle to consider this cultural 
context in their classifications (8).
	 There have been attempts to mitigate this cultural bias 
within ML models. For example, Ji Ho Park and her colleagues 
at Hong Kong University of Science and Technology proposed 
a method called bias fine-tuning. This method first trains a 
model on a large dataset without bias and then fine-tunes it 
on a smaller, more biased dataset (5). The intuition is that the 
model is generalized to the data from the first training dataset 
and then is focused on a specific aspect of the data from the 
second training dataset (5). This model was used to mitigate 
gender biases in HS detection by 90-98% (5). Another 
procedure was biased topic sampling used by Dante Razo 
and Sandra Kübler from Indiana University, Bloomington. 
They trained an ML model on a training dataset which only 
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SUMMARY
Hate speech detection systems have become 
essential in the advancing digital world. They limit 
the dissemination of hateful and offensive language 
online. However, the machine learning algorithms 
that provide the basis for these systems struggle to 
identify hate speech versus clean speech within a 
cultural context, allowing the growth of cultural bias. 
Though previous methods had aimed to mitigate 
the cultural bias of a machine learning model, we 
attempted to find a new understanding with regard 
to cultural bias. This study sought to determine 
a correlation between increasing the amount of 
cultural speech used to train the machine learning 
model and the model’s cultural bias when classifying 
hate speech and clean speech. Additionally, we 
hypothesized that increasing the cultural weight of 
a training dataset would mitigate the cultural bias. 
To test this hypothesis, we created a unique method 
named Categorial Weighted Training (CaWT), derived 
from multiple other methods of previous researchers, 
to identify a correlation. CaWT involved the creation 
of multiple culturally-weighted training datasets and 
training a machine learning algorithm against them. 
From this, the results illustrated minimal correlation 
between the cultural weight of a training dataset and 
the model’s performance on cultural speech. However, 
a significant negative correlation exists between 
the cultural weight and the model’s performance on 
non-cultural speech. This implies that increasing the 
cultural weight does not affect the model’s cultural 
bias but decreases the model’s performance on non-
cultural speech, suggesting that a lower cultural 
weight is ideal within the limitations of our research.

INTRODUCTION
	 The past few decades have introduced new technologies 
that allow for instantaneous global communication among 
people of various cultures. The expansion of social media 
networks and the Internet enables unprecedented access and 
dissemination of information (1). Considering the importance 
of global communication, it has proven essential to maintain 
a user-friendly environment to refine this communication 
network. 
	 Unfortunately, the presence of hateful language grows 
with the rise of user-generated content (2). Additionally, the 
option to remain anonymous promotes the dissemination of 
hateful content in the Internet (1). Furthermore, this hateful 

Shlok Bhattacharya1, Jean Kanzinger1

1 Chagrin Falls High School, Cleveland, Ohio



20 MARCH 2024  |  VOL 7  |  2Journal of Emerging Investigators  •  www.emerginginvestigators.org

DOI: https://doi.org/10.59720/23-156

contained topics known to incite abuse such as politics and 
religion (9).
	 Our research addresses the extent of the impact that a 
culturally-weighted training dataset (CWTD) has on the ability 
of a support vector machine (SVM) model to mitigate cultural 
bias in the context of HS detection. We chose an SVM model 
because SVMs are capable of classifying data into given 
categories such as hate/clean and cultural/non-cultural 
speech. Specifically, our unique proposed method, called 
Categorical Weighted Training (CaWT), was inspired by both 
bias fine-tuning and biased topic sampling. We hypothesized 
that increasing the cultural weight (CW) will have a negative 
relationship with cultural bias, which would be desirable 
since it indicates a decrease in cultural bias. However, we 
also suspected that increasing CW would decrease the SVM 
performance on non-cultural speech. The final results both 
affirmed and refuted parts of this hypothesis. We also found 
that CW has a negative relationship with SVM performance on 
non-cultural speech. However, we found that increasing the 
CW of a training dataset had no noticeable effect on cultural 
bias in HS detection. This implies that, overall, within the 
range of 70% to 95% CW, the SVM performance is optimized 
at 70% CW. 

RESULTS
Classification Measurements
	 We used the F1-score to measure cultural bias where 
a greater F1-score on cultural speech indicated a lower 
presence of cultural bias. Precision and recall were elements 
of the F1-score. Within a given class, precision quantified 
the proportion of false positives, where a low precision score 
indicated more false positives than true positives. On the 
other hand, recall quantified the proportion of false negatives, 
where a low recall score indicated more false negatives than 
true positives.

Classification Model Performance
	 The model’s overall performance for Hate Cultural Speech 
(HCS) increased slightly as CW increased since the slope 
of the trendline was slightly positive at 0.0962 and had a 

strong coefficient of determination, or R2, of 0.776 (Figure 1). 
Furthermore, the model was less likely to classify HCS as one 
of the other three classifications at greater values of CW due to 
the positive relationship of recall with CW (Figure 1). However, 
the SVM model made more false HCS classifications with an 
increase in CW, indicated by the negative slope of precision 
(Figure 1). Since the R2 values for precision and recall were 
greater than 0.9, these scores for HCS maintained a strong 
correlation with CW (Figure 1).
	 For Clean Cultural Speech (CCS), the model’s performance 
on this classification remained largely unchanged due to the 
F1-score’s near-zero slope and low R2 value of 0.253 (Figure 
2). Regardless, the strong correlation, with R2 of 0.816, but 
slight negative slope of the precision indicated that the SVM 
model made more false CCS classifications when the CW 
was increased (Figure 2). Since the precision remained 
below 0.2, under 20% of the model’s CCS predictions were 
correct throughout the experiments (Figure 2). Additionally, 
the SVM model was less likely to classify CCS as one of the 
other three classifications. Specifically, the slope and R2 of 
the recall were 0.568 and 0.942, respectively, concluding a 
strong, positive relationship between CW and the recall for 
CCS (Figure 2).
	 In terms of Hate Non-Cultural Speech (HNCS), the 
model’s performance slightly decreased due to its negative 
slope (Figure 3). However, the R2 value of the F1-score was 
0.339, which indicated a weaker correlation to CW (Figure 3). 
The yellow trendline, representing the recall score, indicated 
that as CW increased, the model was more likely to classify 
HNCS as another classification with greater CW values for 
the training dataset (Figure 3). Since the R2 was 0.894 for 
recall, this was a strong correlation (Figure 3). On the other 
hand, the precision score increased slightly with CW while 
maintaining a strong correlation, demonstrating that of all 
the classified HNCS, fewer were falsely classified as CW 
increased (Figure 3).
	 The model performance on Clean Non-Cultural Speech 
(CNCS) decreased since the F1-score experienced a 
negative relationship with CW (Figure 4). Similarly, the 
recall decreased as well, suggesting that the model falsely 

Figure 1: Hate Cultural Speech (HCS). Scores vs. Cultural Weight 
(CW). Scatterplot with best-fit line illustrating the correlation between 
the scores – F1-score, precision, recall – relative to HCS and the 
CW of the training dataset. Each data point is the average score 
of the sub-experiments within the specific parent experiments. R2 is 
the coefficient of determination and represents the correlation of the 
scores to the CW.

Figure 2: Clean Cultural Speech (CCS). Scores vs. Cultural Weight 
(CW). Scatterplot with best-fit line illustrating the correlation between 
the scores – F1-score, precision, recall – relative to CCS and the 
CW of the training dataset. Each data point is the average score 
of the sub-experiments within the specific parent experiments. R2 is 
the coefficient of determination and represents the correlation of the 
scores to the CW.
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classified more CNCS phrases in other categories as the 
CW increased (Figure 4). Conversely, precision increased 
so the model’s false CNCS classifications decreased as CW 
increased (Figure 4). All these associations were extremely 
strong with R2 values all above 0.9 (Figure 4).

DISCUSSION
	 Upon the analysis of the presented data, it is evident that 
a correlation between CW and SVM performance exists. The 
F1-scores of both the cultural speech categories remained 
relatively unchanged as CW increased due to their near-
zero slopes. However, the F1-scores of the non-cultural 
speech categories illustrated a more dramatic decrease 
as CW increased. In other words, increasing CW does not 
impact the model’s overall performance when classifying 
cultural speech, but decreases its overall performance when 
classifying non-cultural speech. Thus, increasing CW does 
not necessarily reduce cultural bias due to this relationship
	 Though the F1-scores illustrate a general picture regarding 
how well the SVM model categorizes certain speech, the 
precision and recall scores create a more in-depth image that 
specifies how the model thinks when it categorizes phrases 
into the four categories. 
	 Together, the scores indicate that as the CW increases, 
the model will decreasingly misclassify the cultural speech as 
non-cultural speech due to their being more cultural speech 
to train on. Conversely, since the precision for the cultural 
speech categories decreases with the increase in CW, the 
model will increasingly misclassify the non-cultural phrases 
as cultural speech due to their being less non-cultural speech 
to train on.
	 Furthermore, the model became more likely to classify 
non-cultural phrases as cultural speech due to non-cultural 
speech being the minority class. This means that the model 
was not well trained on non-cultural speech and was therefore 
misclassified more often as cultural speech. On the other 
hand, the model was less likely to classify cultural phrases as 
non-cultural speech when trained with a dataset of a high CW 
due to cultural speech being the majority class. Specifically, 
the model was more comfortable classifying cultural speech 

because it was more present than non-cultural speech in the 
training dataset.
	 Overall, the model’s resulting recall and precision scores 
grew in opposite directions for both cultural speech and non-
cultural speech, which provides specific details regarding the 
false negatives and false positives of each performance. The 
diverging precision-recall curves occur due to the precision-
recall tradeoff (10). In other words, this concept illustrates 
that as one of the scores grows, the other score is offset 
as a result of the imbalanced dataset our procedure utilizes 
(10). In this case, since cultural speech is the majority class 
and non-cultural speech is the minority class in the training 
datasets, the precision-recall curves must diverge due to this 
imbalance. Additionally, since cultural speech is the majority 
class, the model is already adequately trained on it so adding 
more cultural speech does not necessarily improve the model 
performance on this category. For this reason, the F1 curve 
remains constant. This refutes our initial hypothesis that 
increasing the CW of a training dataset will correlate to an 
increase in SVM performance, thus a decrease in cultural 
bias. Despite this, we correctly predicted that the CW of a 
training dataset will have a negative relationship to the SVM 
performance on non-cultural speech. This occurs because 
non-cultural speech is the minority class so as its percentage 
decreases when CW increases, the model has less non-
cultural phrases to train on thus the performance on non-
cultural speech will decrease.
	 This new understanding regarding the relationship 
between a training dataset’s CW and cultural bias provides 
social media companies with the necessary information for 
improved HS detection systems. Specifically, this study, 
within its limitations, finds it best that companies including X, 
Meta Platforms, and Alphabet should train SVM models on 
datasets that have about 70% CW when using CaWT. Since 
CW has a minimal relationship with the model performance 
on cultural speech, a lower CW does not correlate to cultural 
bias. However, a lower CW does correlate with a greater 
model performance on non-cultural speech. Thus, to improve 
HS detection software using CaWT, social media platforms 
should utilize a training dataset where around 70% of it 

Figure 3: Hate Non-Cultural Speech (HNCS). Scores vs. Cultural 
Weight (CW). Scatterplot with best-fit line illustrating the correlation 
between the scores – F1-score, precision, recall – relative to HNCS 
and the CW of the training dataset. Each data point is the average 
score of the sub-experiments within the specific parent experiments. 
R2 is the coefficient of determination and represents the correlation 
of the scores to the CW.

Figure 4: Clean Non-Cultural Speech (CNCS). Scores vs. Cultural 
Weight (CW). Scatterplot with best-fit line illustrating the correlation 
between the scores – F1-score, precision, recall – relative to CNCS 
and the CW of the training dataset. Each data point is the average 
score of the sub-experiments within the specific parent experiments. 
R2 is the coefficient of determination and represents the correlation 
of the scores to the CW.
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contains cultural speech.
	 Though our research concludes an intriguing correlation 
between the CW of a training dataset and the four different 
speech classifications, there exist limitations that future 
researchers may address to further this study on CaWT. 
For example, HateXplain only contained 640 HNCS phrases 
which limited the size of the sub-experiment training 
datasets to 3,640 phrases in order to accommodate large 
CWs. However, compared to other dataset sizes, this size 
is relatively small. For example, HateXplain contains 15,383 
total phrases and is intended to be used as one training 
dataset. Additionally, the F1 for HCS remains around 0.65, 
while for CCS, it is approximately 0.27 (Figure 1, Figure 2). 
Despite equal phrase counts in both classes, the significant 
difference in their F1-scores indicates data insufficiency in the 
training dataset. Although 3,640 phrases proved sufficient to 
determine whether the correlation between CW and model 
performance existed, future researchers should utilize larger 
datasets that contain more than 10,000 phrases for more 
accurate and higher-performance results. Furthermore, 
researchers could expand the scope of the research rather 
than limiting themselves to a CW range of 70% to 95%. The 
results of such a study would be able to provide a more 
general understanding of the effects of increasing CW on 
CaWT. 
	 Additionally, with a larger dataset size, researchers could 
address the relatively large 5% CW increment size used in 
this research. A larger dataset may allow the increment size to 
be 3% or less. This will allow researchers to collect more data 
on the CW percentages that were not used in this research, 
resulting in a more accurate trendline. Ideally, researchers 
should find or create a large dataset that allows an increment 
size of 1%, to accommodate more specific proportions, 
while ensuring that the number of clean speech phrases is 
equivalent to the number of HS phrases.
	 Furthermore, other researchers should consider 
increasing the number of sub-experiments beyond 10. 
Increasing the number of sub-experiments allows for a more 
accurate average to represent the CW percentage of the 
parent experiments. However, running one sub-experiment 
for a training dataset of size 3,640 on a testing dataset of 
size 910 takes around 45 seconds. For this reason, future 
researchers should create an algorithm that runs these 
sub-experiments a given number of times to optimize the 
time efficiency of the researcher, while allowing more sub-
experiments to represent the data.
	 Also, HateXplain does not provide information regarding 
the contributors to the posts. More specifically, the users 
and targets of the posts are unknown to maintain anonymity. 
However, this ethical limitation, though reasonable, does not 
allow research regarding online interactions among those of 
different cultures or those of the same culture. Researchers 
should aim to train the SVM model on phrases with differing 
cultural contexts. For example, to better HS detection, an 
SVM model should understand the difference between a 
certain phrase said within the commenter’s culture than when 
that phrase is directed toward a different culture. If future 
researchers address this limitation, HS detection may prove 
more reliable in a social media environment where much 
diversity exists. 
	 While CaWT targets HS detection, it can be extended to 
other fields using the same concept of weighing the training 

dataset. CaWT opens new possibilities for future research. 
Anywhere SVM models seem to output bias, CaWT can be 
applied to that scenario with its results investigated.
	 This research concludes that CW and the performance of 
an SVM model on cultural speech are weakly correlated, thus 
having no effect on cultural bias. However, the performance 
on non-cultural speech is negatively related to CW. 
Furthermore, this research explores in-depth the reasoning 
behind the model’s F1-score by explaining the precision and 
recall scores of each classification. These scores provide 
insights into how the model thinks while classifying in terms 
of false positives and false negatives. This knowledge may 
prove useful to create an SVM model specific to HS detection. 
In short, CaWT gives future researchers and social media 
companies new knowledge on how CW impacts performance 
on individual classifications, which may improve the currently 
applied HS detection software on social media platforms.

MATERIALS AND METHODS
Score Descriptions
	 The SVM experiments were measured using three scores: 
F1-score, precision, and recall. The F1-score considers the 
false positives and false negatives in its calculation; thus, it 
yields a refined story regarding the model’s performance on 
imbalanced datasets. Furthermore, the F1-score is calculated 
using the following formula: 

From the formula, the precision and recall scores are elements 
within the F1-score. Precision calculates the accuracy of all 
the positive predictions of a class:

Recall calculates the accuracy of the actual positives of a 
class:

Though the F1-score provides information regarding the 
overall SVM performance on a classification, precision and 
recall provide more detail regarding the model’s classifications 
in terms of false positives and false negatives.

Materials
	 We operated an SVM model which is an ML model capable 
of classifying data and is widely used in text classification 
settings. We conducted SVM experiments using supervised 
learning in Jupyter Notebook, meaning that we presented 
the model with a training dataset that contained annotations 
telling it what each data phrase should be categorized as. 
The model then learns from the training dataset and can 
predict the classifications of the testing phrases in the testing 
dataset.
	 We also utilized HateXplain, an annotated dataset 
published by professors at the Indian Institute of Technology 
in Kharagpur and Universität Hamburg. To create HateXplain, 
the researchers asked annotators to label social media posts 
as hate, offensive, or normal speech and then label the target 
community of the post such as African, Indian, Islam, Jewish, 
or even no target (11). Additionally, to ensure the accuracy 
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of the annotations, three annotators voted on each type-
of-speech label where the disputed phrases were omitted 
from HateXplain (11). We classified all offensive speech 
classifications as HS due to the scope of this research 
focusing on the target of the phrases rather than the specific 
speech classification. Furthermore, we labeled a phrase as 
cultural speech if the majority of annotators agreed that the 
speech targeted a certain group. Overall, the entire HateXplain 
training dataset consisted of 8,492 HCS, 640 HNCS, 1,735 
CCS, and 4,516 CNCS. Since HateXplain contained 15,383 
carefully annotated phrases, we utilized this dataset for the 
experiments.
	 All experiments were conducted in Jupyter Notebook 
with a Dell Inspiron 16 laptop, equipped with an Intel Core i5 
processor. After the experiments, the data was exported to 
Google Sheets where the resulting graphs and tables were 
generated.

CaWT Procedure
	 In total, we ran 6 parent experiments with the following 
CWs: 70%, 75%, 80%, 85%, 90%, 95%. Within each parent 
experiment, we conducted 10 sub-experiments with the 
intent of creating more accurate data, through multiple 
tests, to represent each parent experiment’s CW. These 
sub-experiments maintained the same CW and class 
distribution as all the other sub-experiments within the parent 
experiment. For example, the 10 sub-experiments within the 
70% CW parent experiment, all maintained 70% as the CW 
but consisted of unique phrases to fill each category, due 
to the random parsing of the program (Table 1). Each sub-
experiment involved running the output training dataset with 
the corresponding CW against the SVM algorithm in order to 
train it. Once trained, the SVM algorithm was then run against 
a testing dataset and the scores were printed.

Constructing Datasets
	 Furthermore, to create each training dataset efficiently, 
we wrote a scraping program to collect data phrases from 
the published dataset to create our proposed method. 
The program can parse through HateXplain with a given 
percentage, and based on that percentage, outputs a new 
dataset with cultural speech representing that percentage 
of the new CWTD. Additionally, the program ensures a 1:1 
ratio of HS to clean speech within each CWTD and category: 

HCS, HNCS, CCS, CNCS (Table 1). While parsing, the 
program selects random phrases within the correct category. 
Particularly, the 10 sub-experiment CWTDs for a certain CW 
will all contain the same amount of phrases in each category 
with a 1:1 HS to clean speech ratio but all the phrases may be 
different. Furthermore, the overall dataset sizes remained the 
same for experimental purposes while the CW percentage 
varied (Table 1). The overall dataset size was determined to be 
3,640 since it is the largest size that accommodates the CWs 
– 70%, 75%, 80%, 85%, 90%, and 95% – while maintaining 
the range limitations of each category of HateXplain (Table 
1). Specifically, since the amount of HS equals the amount 
of clean speech, each CW multiplied with the dataset size 
must be an even number. Additionally, since HateXplain only 
contained 640 HNCS phrases, this limited the datasets’ sizes. 
The largest size that satisfies these constraints is 3,640. For 
this reason, if given the input 0.7, the program outputs a 
training dataset derived from HateXplain which contains 70% 
cultural speech and 1,274 HCS phrases (Table 1). 
	 The program also selected the first 910 phrases – 502 HCS, 
96 CCS, 282 CNCS, 30 HNCS – of the HateXplain testing 
dataset to create a new testing dataset for the experiments 
(Table 1). HateXplain’s testing dataset is completely different 
from the training dataset, ensuring that all the testing phrases 
are unique from the training phrases. The fact that all the 
HateXplain datasets are in a random order justifies only 
selecting a specific portion of the dataset. Importantly, the CW 
does not affect the testing dataset whatsoever. Instead, this 
dataset remains static with the same 910 phrases throughout 
the full procedure.
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